These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32865620)

  • 1. Insights into the molecular control of cross-incompatibility in Zea mays.
    Lu Y; Moran Lauter AN; Makkena S; Scott MP; Evans MMS
    Plant Reprod; 2020 Dec; 33(3-4):117-128. PubMed ID: 32865620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and cellular analysis of cross-incompatibility in Zea mays.
    Lu Y; Kermicle JL; Evans MM
    Plant Reprod; 2014 Mar; 27(1):19-29. PubMed ID: 24193168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pair of non-Mendelian genes at the Ga2 locus confer unilateral cross-incompatibility in maize.
    Chen Z; Zhang Z; Zhang H; Li K; Cai D; Zhao L; Liu J; Chen H
    Nat Commun; 2022 Apr; 13(1):1993. PubMed ID: 35422051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Zea mays sexual compatibility gene ga2: naturally occurring alleles, their distribution, and role in reproductive isolation.
    Kermicle JL; Evans MM
    J Hered; 2010; 101(6):737-49. PubMed ID: 20696670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility.
    Zhang Z; Zhang B; Chen Z; Zhang D; Zhang H; Wang H; Zhang Y; Cai D; Liu J; Xiao S; Huo Y; Liu J; Zhang L; Wang M; Liu X; Xue Y; Zhao L; Zhou Y; Chen H
    Nat Commun; 2018 Sep; 9(1):3678. PubMed ID: 30202064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pectin methylesterase activities in reproductive tissues of maize plants with different haplotypes of the Ga1 and Ga2 cross incompatibility systems.
    Bapat AR; Scott MP
    Plant Reprod; 2024 Dec; 37(4):479-488. PubMed ID: 38700669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays.
    Lu Y; Hokin SA; Kermicle JL; Hartwig T; Evans MMS
    Nat Commun; 2019 May; 10(1):2304. PubMed ID: 31127100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three types of genes underlying the Gametophyte factor1 locus cause unilateral cross incompatibility in maize.
    Wang Y; Li W; Wang L; Yan J; Lu G; Yang N; Xu J; Wang Y; Gui S; Chen G; Li S; Wu C; Guo T; Xiao Y; Warburton ML; Fernie AR; Dresselhaus T; Yan J
    Nat Commun; 2022 Aug; 13(1):4498. PubMed ID: 35922428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome Analysis Provides Insight into the Molecular Mechanisms Underlying
    Wang M; Chen Z; Zhang H; Chen H; Gao X
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29899298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single silk- and multiple pollen-expressed PMEs at the Ga1 locus modulate maize unilateral cross-incompatibility.
    Zhang Z; Li K; Zhang H; Wang Q; Zhao L; Liu J; Chen H
    J Integr Plant Biol; 2023 May; 65(5):1344-1355. PubMed ID: 36621865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Pectin Methylesterase
    Moran Lauter AN; Muszynski MG; Huffman RD; Scott MP
    Front Plant Sci; 2017; 8():1926. PubMed ID: 29170674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses.
    Dresselhaus T; Lausser A; Márton ML
    Ann Bot; 2011 Sep; 108(4):727-37. PubMed ID: 21345919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis and fine mapping of the Ga1-S gene region conferring cross-incompatibility in maize.
    Zhang H; Liu X; Zhang Y; Jiang C; Cui D; Liu H; Li D; Wang L; Chen T; Ning L; Ma X; Chen H
    Theor Appl Genet; 2012 Feb; 124(3):459-65. PubMed ID: 22009288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas.
    Xu XH; Chen H; Sang YL; Wang F; Ma JP; Gao XQ; Zhang XS
    BMC Genomics; 2012 Jul; 13():294. PubMed ID: 22748054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives.
    Kermicle JL
    Genetics; 2006 Jan; 172(1):499-506. PubMed ID: 16157680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollination between maize and teosinte: an important determinant of gene flow in Mexico.
    Baltazar BM; de Jesús Sánchez-Gonzalez J; de la Cruz-Larios L; Schoper JB
    Theor Appl Genet; 2005 Feb; 110(3):519-26. PubMed ID: 15592808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pollen expressed PME gene at Tcb1 locus confers maize unilateral cross-incompatibility.
    Zhang Z; Li K; Zhang T; Chen H
    Plant Biotechnol J; 2023 Mar; 21(3):454-456. PubMed ID: 36382905
    [No Abstract]   [Full Text] [Related]  

  • 18. How common is self-incompatibility across species of the herkogamous genus Ariocarpus?
    Martínez-Peralta C; Márquez-Guzmán J; Mandujano MC
    Am J Bot; 2014 Mar; 101(3):530-8. PubMed ID: 24607514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Transcriptional Insights of Pollen-Pistil Interactions Commencing Self-Incompatibility and Fertilization in Tea [
    Seth R; Bhandawat A; Parmar R; Singh P; Kumar S; Sharma RK
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30696008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence divergence and loss-of-function phenotypes of S locus F-box brothers genes are consistent with non-self recognition by multiple pollen determinants in self-incompatibility of Japanese pear (Pyrus pyrifolia).
    Kakui H; Kato M; Ushijima K; Kitaguchi M; Kato S; Sassa H
    Plant J; 2011 Dec; 68(6):1028-38. PubMed ID: 21851432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.