These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32865735)

  • 1. Molecular Dynamics Simulations of Channelrhodopsin Chimera, C1C2.
    VanGordon MR
    Methods Mol Biol; 2021; 2191():3-15. PubMed ID: 32865735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing Potential of the Mean Force Profiles for Ion Permeation Through Channelrhodopsin Chimera, C1C2.
    Priest C; VanGordon MR; Rempe C; Chaudhari MI; Stevens MJ; Rick S; Rempe SB
    Methods Mol Biol; 2021; 2191():17-28. PubMed ID: 32865736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-atom molecular dynamics simulations of an artificial sodium channel in a lipid bilayer: the effect of water solvation/desolvation of the sodium ion.
    Skelton AA; Khedkar VM; Fried JR
    J Biomol Struct Dyn; 2016; 34(3):529-39. PubMed ID: 26046587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metadynamics simulations reveal mechanisms of Na+ and Ca2+ transport in two open states of the channelrhodopsin chimera, C1C2.
    Prignano LA; Stevens MJ; Vanegas JM; Rempe SB; Dempski RE
    PLoS One; 2024; 19(9):e0309553. PubMed ID: 39241014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulation of Transmembrane Transport of Chloride Ions in Mutants of Channelrhodopsin.
    Zhang W; Yang T; Zhou S; Cheng J; Yuan S; Lo GV; Dou Y
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31835536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic Study of Intramolecular Interactions in the Closed-State Channelrhodopsin Chimera, C1C2.
    VanGordon MR; Gyawali G; Rick SW; Rempe SB
    Biophys J; 2017 Mar; 112(5):943-952. PubMed ID: 28297653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing Channelrhodopsin Channel Properties Via Two-Electrode Voltage Clamp and Kinetic Modeling.
    Prignano L; Herchenroder L; Dempski RE
    Methods Mol Biol; 2021; 2191():49-63. PubMed ID: 32865738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channelrhodopsin C1C2: Photocycle kinetics and interactions near the central gate.
    VanGordon MR; Prignano LA; Dempski RE; Rick SW; Rempe SB
    Biophys J; 2021 May; 120(9):1835-1845. PubMed ID: 33705762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular structure of a phosphatidylserine bilayer determined by scattering and molecular dynamics simulations.
    Pan J; Cheng X; Monticelli L; Heberle FA; Kučerka N; Tieleman DP; Katsaras J
    Soft Matter; 2014 Jun; 10(21):3716-25. PubMed ID: 24807693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic and Dynamic Analysis of Transport of Na
    Song Y; Lee JH; Hwang H; Schatz GC; Hwang H
    J Phys Chem B; 2016 Nov; 120(46):11912-11922. PubMed ID: 27934398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of a calix[4]arene derivative with a DOPC bilayer: biomolecular simulations towards chloride transport.
    Costa PJ; Marques I; Félix V
    Biochim Biophys Acta; 2014 Mar; 1838(3):890-901. PubMed ID: 24316169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unassisted N-acetyl-phenylalanine-amide transport across membrane with varying lipid size and composition: kinetic measurements and atomistic molecular dynamics simulation.
    Lee BL; Kuczera K; Lee KH; Childs EW; Jas GS
    J Biomol Struct Dyn; 2022 Mar; 40(4):1445-1460. PubMed ID: 33034537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free Energy Calculations of Membrane Permeation: Challenges Due to Strong Headgroup-Solute Interactions.
    Pokhrel N; Maibaum L
    J Chem Theory Comput; 2018 Mar; 14(3):1762-1771. PubMed ID: 29406707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the lipid bilayer phase state on the water membrane interface.
    Stepniewski M; Bunker A; Pasenkiewicz-Gierula M; Karttunen M; Róg T
    J Phys Chem B; 2010 Sep; 114(36):11784-92. PubMed ID: 20726538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NaCl interactions with phosphatidylcholine bilayers do not alter membrane structure but induce long-range ordering of ions and water.
    Valley CC; Perlmutter JD; Braun AR; Sachs JN
    J Membr Biol; 2011 Nov; 244(1):35-42. PubMed ID: 22015614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation Mechanism of Ion Channel in Channelrhodopsin-2: Molecular Dynamics Simulation and Steering Molecular Dynamics Simulations.
    Yang T; Zhang W; Cheng J; Nie Y; Xin Q; Yuan S; Dou Y
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31382458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution.
    Im W; Roux B
    J Mol Biol; 2002 Jun; 319(5):1177-97. PubMed ID: 12079356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers.
    Chiu SW; Jakobsson E; Subramaniam S; Scott HL
    Biophys J; 1999 Nov; 77(5):2462-9. PubMed ID: 10545348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Na+, K+, and Ca2+ on the structures of anionic lipid bilayers and biological implication.
    Yang H; Xu Y; Gao Z; Mao Y; Du Y; Jiang H
    J Phys Chem B; 2010 Dec; 114(50):16978-88. PubMed ID: 21126040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.