These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32865738)

  • 1. Characterizing Channelrhodopsin Channel Properties Via Two-Electrode Voltage Clamp and Kinetic Modeling.
    Prignano L; Herchenroder L; Dempski RE
    Methods Mol Biol; 2021; 2191():49-63. PubMed ID: 32865738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Transport by Light-Activated Rhodopsins Determined by Electrophysiological Recordings.
    Hussein T; Bamann C
    Methods Mol Biol; 2021; 2191():67-84. PubMed ID: 32865739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimized and automated approach to quantifying channelrhodopsin photocurrent kinetics.
    Prignano L; Faal SG; Hera A; Dempski RE
    Anal Biochem; 2019 Feb; 566():160-167. PubMed ID: 30502319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transoocyte voltage clamp: a non-invasive technique for electrophysiological experiments with Xenopus laevis oocytes.
    Cucu D; Simaels J; Jans D; Van Driessche W
    Pflugers Arch; 2004 Mar; 447(6):934-42. PubMed ID: 14716490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage Clamp Fluorometry: Illuminating the Dynamics of Ion Channels.
    Sastre D; Fedida D
    Methods Mol Biol; 2024; 2796():119-138. PubMed ID: 38856899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Xenopus oocyte cut-open vaseline gap voltage-clamp technique with fluorometry.
    Rudokas MW; Varga Z; Schubert AR; Asaro AB; Silva JR
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24637712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements.
    Cohen A; Zilberberg N
    J Neurosci Methods; 2006 May; 153(1):62-70. PubMed ID: 16293314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage clamp recordings from Xenopus oocytes.
    Dascal N
    Curr Protoc Neurosci; 2001 May; Chapter 6():Unit 6.12. PubMed ID: 18428511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional expression of type 1 rat GABA transporter in microinjected Xenopus laevis oocytes.
    Giovannardi S; Soragna A; Magagnin S; Faravelli L
    Methods Mol Biol; 2007; 375():235-55. PubMed ID: 17634605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influenza D virus M2 protein exhibits ion channel activity in Xenopus laevis oocytes.
    Kesinger E; Liu J; Jensen A; Chia CP; Demers A; Moriyama H
    PLoS One; 2018; 13(6):e0199227. PubMed ID: 29927982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-microelectrode voltage clamp of Xenopus oocytes: voltage errors and compensation for local current flow.
    Baumgartner W; Islas L; Sigworth FJ
    Biophys J; 1999 Oct; 77(4):1980-91. PubMed ID: 10512818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-electrode voltage clamp.
    Guan B; Chen X; Zhang H
    Methods Mol Biol; 2013; 998():79-89. PubMed ID: 23529422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P2X Electrophysiology and Surface Trafficking in Xenopus Oocytes.
    Bertin E; Martínez A; Boué-Grabot E
    Methods Mol Biol; 2020; 2041():243-259. PubMed ID: 31646494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Xenopus oocytes to measure ionic selectivity of pore-forming peptides and ion channels.
    Cens T; Charnet P
    Methods Mol Biol; 2007; 403():287-302. PubMed ID: 18828001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological Characterization of Na,K-ATPases Expressed in Xenopus laevis Oocytes Using Two-Electrode Voltage Clamping.
    Hilbers F; Poulsen H
    Methods Mol Biol; 2016; 1377():305-18. PubMed ID: 26695042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement and testing of a concentration-clamp system for oocytes of Xenopus laevis.
    Madeja M; Musshoff U; Speckmann EJ
    J Neurosci Methods; 1995 Dec; 63(1-2):211-3. PubMed ID: 8788066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patch-Clamp and Perfusion Techniques to Study Ion Channels Expressed in
    Zhang G; Cui J
    Cold Spring Harb Protoc; 2018 Apr; 2018(4):pdb.prot099051. PubMed ID: 29382809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GLUT Characterization Using Frog Xenopus laevis Oocytes.
    Long W; O'Neill D; Cheeseman CI
    Methods Mol Biol; 2018; 1713():45-55. PubMed ID: 29218516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metadynamics simulations reveal mechanisms of Na+ and Ca2+ transport in two open states of the channelrhodopsin chimera, C1C2.
    Prignano LA; Stevens MJ; Vanegas JM; Rempe SB; Dempski RE
    PLoS One; 2024; 19(9):e0309553. PubMed ID: 39241014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion selectivity of pore-forming peptides and ion channels measured in Xenopus oocytes.
    Cens T; Charnet P
    Methods Mol Biol; 2014; 1183():355-69. PubMed ID: 25023320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.