BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32865742)

  • 1. Probing Synaptic Signaling with Optogenetic Stimulation and Genetically Encoded Calcium Reporters.
    Borja GB; Shroff H; Upadhyay H; Liu PW; Baru V; Cheng YC; McManus OB; Williams LA; Dempsey GT; Werley CA
    Methods Mol Biol; 2021; 2191():109-134. PubMed ID: 32865742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving high-frequency optical control of synaptic transmission.
    Jackman SL; Beneduce BM; Drew IR; Regehr WG
    J Neurosci; 2014 May; 34(22):7704-14. PubMed ID: 24872574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diminishing neuronal acidification by channelrhodopsins with low proton conduction.
    Hayward RF; Brooks FP; Yang S; Gao S; Cohen AE
    Elife; 2023 Oct; 12():. PubMed ID: 37801078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance of optogenetic channel rhodopsin (ChR2) function in aging mice: Implications for pharmacological studies of inhibitory synaptic transmission, quantal content, and calcium homeostasis.
    DuBois DW; Murchison DA; Mahnke AH; Bang E; Winzer-Serhan U; Griffith WH; Souza KA
    Neuropharmacology; 2023 Nov; 238():109651. PubMed ID: 37414332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying Synaptic Connectivity and Strength with Optogenetics and Patch-Clamp Electrophysiology.
    Linders LE; Supiot LF; Du W; D'Angelo R; Adan RAH; Riga D; Meye FJ
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetics to Interrogate Neuron-Glia Interactions in Pups and Adults.
    Habermacher C; Manot-Saillet B; Ortolani D; Ortiz FC; Angulo MC
    Methods Mol Biol; 2021; 2191():135-149. PubMed ID: 32865743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.
    Zolnik TA; Sha F; Johenning FW; Schreiter ER; Looger LL; Larkum ME; Sachdev RN
    J Physiol; 2017 Mar; 595(5):1465-1477. PubMed ID: 27861906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings.
    Schmid F; Wachsmuth L; Schwalm M; Prouvot PH; Jubal ER; Fois C; Pramanik G; Zimmer C; Faber C; Stroh A
    J Cereb Blood Flow Metab; 2016 Nov; 36(11):1885-1900. PubMed ID: 26661247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Stimulation of the Central Amygdala Using Channelrhodopsin.
    Knes AS; Freeland CM; Robinson MJF
    Methods Mol Biol; 2021; 2191():351-376. PubMed ID: 32865754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic Control of Cardiac Autonomic Neurons in Transgenic Mice.
    Moreno A; Kowalik G; Mendelowitz D; Kay MW
    Methods Mol Biol; 2021; 2191():309-321. PubMed ID: 32865752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α-Neurexins Together with α2δ-1 Auxiliary Subunits Regulate Ca
    Brockhaus J; Schreitmüller M; Repetto D; Klatt O; Reissner C; Elmslie K; Heine M; Missler M
    J Neurosci; 2018 Sep; 38(38):8277-8294. PubMed ID: 30104341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp.
    Aksoy-Aksel A; Genty J; Zeller M; Ehrlich I
    Methods Mol Biol; 2020; 2173():1-20. PubMed ID: 32651907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanopsin for precise optogenetic activation of astrocyte-neuron networks.
    Mederos S; Hernández-Vivanco A; Ramírez-Franco J; Martín-Fernández M; Navarrete M; Yang A; Boyden ES; Perea G
    Glia; 2019 May; 67(5):915-934. PubMed ID: 30632636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in cellular optogenetics for photomedicine.
    Chen B; Cui M; Wang Y; Shi P; Wang H; Wang F
    Adv Drug Deliv Rev; 2022 Sep; 188():114457. PubMed ID: 35843507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic optogenetic stimulation with calcium imaging as an all optical tool for cardiac electrophysiology.
    Junge S; Schmieder F; Sasse P; Czarske J; Torres-Mapa ML; Heisterkamp A
    J Biophotonics; 2022 Jul; 15(7):e202100352. PubMed ID: 35397155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging GFP-based reporters in neurons with multiwavelength optogenetic control.
    Venkatachalam V; Cohen AE
    Biophys J; 2014 Oct; 107(7):1554-63. PubMed ID: 25296307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Targeting-Optimized Chronos for Stimulation of the Auditory Pathway.
    Huet AT; Rankovic V
    Methods Mol Biol; 2021; 2191():261-285. PubMed ID: 32865750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photostimulation for In Vitro Optogenetics with High-Power Blue Organic Light-Emitting Diodes.
    Morton A; Murawski C; Deng Y; Keum C; Miles GB; Tello JA; Gather MC
    Adv Biosyst; 2019 Mar; 3(3):e1800290. PubMed ID: 32627397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.