BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32865747)

  • 1. Recording Channelrhodopsin-Evoked Field Potentials and Startle Responses from Larval Zebrafish.
    Ozdemir YI; Hansen CA; Ramy MA; Troconis EL; McNeil LD; Trapani JG
    Methods Mol Biol; 2021; 2191():201-220. PubMed ID: 32865747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intensity-dependent timing and precision of startle response latency in larval zebrafish.
    Troconis EL; Ordoobadi AJ; Sommers TF; Aziz-Bose R; Carter AR; Trapani JG
    J Physiol; 2017 Jan; 595(1):265-282. PubMed ID: 27228964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical stimulation of zebrafish hair cells expressing channelrhodopsin-2.
    Monesson-Olson BD; Browning-Kamins J; Aziz-Bose R; Kreines F; Trapani JG
    PLoS One; 2014; 9(5):e96641. PubMed ID: 24791934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic Manipulation of Olfactory Responses in Transgenic Zebrafish: A Neurobiological and Behavioral Study.
    Jeong YM; Choi TI; Hwang KS; Lee JS; Gerlai R; Kim CH
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording field potentials from zebrafish larvae during escape responses.
    Monesson-Olson BD; Troconis EL; Trapani JG
    J Undergrad Neurosci Educ; 2014; 13(1):A52-8. PubMed ID: 25565920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2
    Harmon TC; McLean DL; Raman IM
    J Neurosci; 2020 Apr; 40(15):3063-3074. PubMed ID: 32139583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From neuron to behavior: Sensory-motor coordination of zebrafish turning behavior.
    Umeda K; Shoji W
    Dev Growth Differ; 2017 Apr; 59(3):107-114. PubMed ID: 28326550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.
    Pulver SR; Pashkovski SL; Hornstein NJ; Garrity PA; Griffith LC
    J Neurophysiol; 2009 Jun; 101(6):3075-88. PubMed ID: 19339465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio).
    Liu YC; Bailey I; Hale ME
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jan; 198(1):11-24. PubMed ID: 21983742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local Spinal Cord Circuits and Bilateral Mauthner Cell Activity Function Together to Drive Alternative Startle Behaviors.
    Liu YC; Hale ME
    Curr Biol; 2017 Mar; 27(5):697-704. PubMed ID: 28216316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic recruitment of spinal reflex pathways from large-diameter primary afferents in non-transgenic rats transduced with AAV9/Channelrhodopsin 2.
    Kubota S; Sidikejiang W; Kudo M; Inoue KI; Umeda T; Takada M; Seki K
    J Physiol; 2019 Oct; 597(19):5025-5040. PubMed ID: 31397900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic properties of larval zebrafish neurons in ethanol.
    Ikeda H; Delargy AH; Yokogawa T; Urban JM; Burgess HA; Ono F
    PLoS One; 2013; 8(5):e63318. PubMed ID: 23658822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pair of ascending neurons in the subesophageal zone mediates aversive sensory inputs-evoked backward locomotion in Drosophila larvae.
    Omamiuda-Ishikawa N; Sakai M; Emoto K
    PLoS Genet; 2020 Nov; 16(11):e1009120. PubMed ID: 33137117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a widespread brain stem escape network in larval zebrafish.
    Gahtan E; Sankrithi N; Campos JB; O'Malley DM
    J Neurophysiol; 2002 Jan; 87(1):608-14. PubMed ID: 11784774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural control and modulation of swimming speed in the larval zebrafish.
    Severi KE; Portugues R; Marques JC; O'Malley DM; Orger MB; Engert F
    Neuron; 2014 Aug; 83(3):692-707. PubMed ID: 25066084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term desensitization of fast escape behavior associated with suppression of Mauthner cell activity in larval zebrafish.
    Takahashi M; Inoue M; Tanimoto M; Kohashi T; Oda Y
    Neurosci Res; 2017 Aug; 121():29-36. PubMed ID: 28343884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin 1.1 contributes to the innate exploration of zebrafish larva.
    Quan FB; Desban L; Mirat O; Kermarquer M; Roussel J; Koëth F; Marnas H; Djenoune L; Lejeune FX; Tostivint H; Wyart C
    Sci Rep; 2020 Sep; 10(1):15235. PubMed ID: 32943676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of a Neurotoxin to Investigate the Contribution of Excitatory Interneurons to Speed Modulation In Vivo.
    Sternberg JR; Severi KE; Fidelin K; Gomez J; Ihara H; Alcheikh Y; Hubbard JM; Kawakami K; Suster M; Wyart C
    Curr Biol; 2016 Sep; 26(17):2319-28. PubMed ID: 27524486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-stimulus intensity modulates startle reflex habituation in larval zebrafish.
    Beppi C; Beringer G; Straumann D; Bögli SY
    Sci Rep; 2021 Nov; 11(1):22410. PubMed ID: 34789729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kinematics of directional control in the fast start of zebrafish larvae.
    Nair A; Azatian G; McHenry MJ
    J Exp Biol; 2015 Dec; 218(Pt 24):3996-4004. PubMed ID: 26519511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.