These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 32865752)

  • 41. Optogenetic induction of cortical spreading depression in anesthetized and freely behaving mice.
    Houben T; Loonen IC; Baca SM; Schenke M; Meijer JH; Ferrari MD; Terwindt GM; Voskuyl RA; Charles A; van den Maagdenberg AM; Tolner EA
    J Cereb Blood Flow Metab; 2017 May; 37(5):1641-1655. PubMed ID: 27107026
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Maintenance of optogenetic channel rhodopsin (ChR2) function in aging mice: Implications for pharmacological studies of inhibitory synaptic transmission, quantal content, and calcium homeostasis.
    DuBois DW; Murchison DA; Mahnke AH; Bang E; Winzer-Serhan U; Griffith WH; Souza KA
    Neuropharmacology; 2023 Nov; 238():109651. PubMed ID: 37414332
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extending the Time Domain of Neuronal Silencing with Cryptophyte Anion Channelrhodopsins.
    Govorunova EG; Sineshchekov OA; Hemmati R; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL
    eNeuro; 2018; 5(3):. PubMed ID: 30027111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optogenetic targeting of cardiac myocytes and non-myocytes: Tools, challenges and utility.
    Johnston CM; Rog-Zielinska EA; Wülfers EM; Houwaart T; Siedlecka U; Naumann A; Nitschke R; Knöpfel T; Kohl P; Schneider-Warme F
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):140-149. PubMed ID: 28919131
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.
    Wengrowski AM; Wang X; Tapa S; Posnack NG; Mendelowitz D; Kay MW
    Cardiovasc Res; 2015 Feb; 105(2):143-50. PubMed ID: 25514932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computational models of optogenetic tools for controlling neural circuits with light.
    Nikolic K; Jarvis S; Grossman N; Schultz S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5934-7. PubMed ID: 24111090
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bicistronic Construct for Optogenetic Prosthesis of Ganglion Cell Receptive Field of Degenerative Retina.
    Petrovskaya LE; Roshchin MV; Smirnova GR; Kolotova DE; Balaban PM; Ostrovsky MA; Malyshev AY
    Dokl Biochem Biophys; 2019 May; 486(1):184-186. PubMed ID: 31367817
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways.
    Darrow KN; Slama MC; Kozin ED; Owoc M; Hancock K; Kempfle J; Edge A; Lacour S; Boyden E; Polley D; Brown MC; Lee DJ
    Brain Res; 2015 Mar; 1599():44-56. PubMed ID: 25481416
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Holographic optogenetic stimulation with calcium imaging as an all optical tool for cardiac electrophysiology.
    Junge S; Schmieder F; Sasse P; Czarske J; Torres-Mapa ML; Heisterkamp A
    J Biophotonics; 2022 Jul; 15(7):e202100352. PubMed ID: 35397155
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chronic Optogenetic Pacing of Human-Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissues.
    Dwenger M; Kowalski WJ; Masumoto H; Nakane T; Keller BB
    Methods Mol Biol; 2021; 2191():151-169. PubMed ID: 32865744
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transient and localized optogenetic activation of somatostatin-interneurons in mouse visual cortex abolishes long-term cortical plasticity due to vision loss.
    Scheyltjens I; Vreysen S; Van den Haute C; Sabanov V; Balschun D; Baekelandt V; Arckens L
    Brain Struct Funct; 2018 Jun; 223(5):2073-2095. PubMed ID: 29372324
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functionally specific optogenetic modulation in primate visual cortex.
    Chernov MM; Friedman RM; Chen G; Stoner GR; Roe AW
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10505-10510. PubMed ID: 30257948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo neurovascular response to focused photoactivation of Channelrhodopsin-2.
    Mester JR; Bazzigaluppi P; Weisspapir I; Dorr A; Beckett TL; Koletar MM; Sled JG; Stefanovic B
    Neuroimage; 2019 May; 192():135-144. PubMed ID: 30669007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Will cardiac optogenetics find the way through the obscure angles of heart physiology?
    Pianca N; Zaglia T; Mongillo M
    Biochem Biophys Res Commun; 2017 Jan; 482(4):515-523. PubMed ID: 27871856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optogenetic intervention of seizures improves spatial memory in a mouse model of chronic temporal lobe epilepsy.
    Kim HK; Gschwind T; Nguyen TM; Bui AD; Felong S; Ampig K; Suh D; Ciernia AV; Wood MA; Soltesz I
    Epilepsia; 2020 Mar; 61(3):561-571. PubMed ID: 32072628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural mechanisms of selectivity and gating in anion channelrhodopsins.
    Kato HE; Kim YS; Paggi JM; Evans KE; Allen WE; Richardson C; Inoue K; Ito S; Ramakrishnan C; Fenno LE; Yamashita K; Hilger D; Lee SY; Berndt A; Shen K; Kandori H; Dror RO; Kobilka BK; Deisseroth K
    Nature; 2018 Sep; 561(7723):349-354. PubMed ID: 30158697
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An optogenetic mouse model of rett syndrome targeting on catecholaminergic neurons.
    Zhang S; Johnson CM; Cui N; Xing H; Zhong W; Wu Y; Jiang C
    J Neurosci Res; 2016 Oct; 94(10):896-906. PubMed ID: 27317352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos.
    Ronzitti E; Conti R; Zampini V; Tanese D; Foust AJ; Klapoetke N; Boyden ES; Papagiakoumou E; Emiliani V
    J Neurosci; 2017 Nov; 37(44):10679-10689. PubMed ID: 28972125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
    van Opbergen CJM; Koopman CD; Kok BJM; Knöpfel T; Renninger SL; Orger MB; Vos MA; van Veen TAB; Bakkers J; de Boer TP
    Theranostics; 2018; 8(17):4750-4764. PubMed ID: 30279735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.