BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32865779)

  • 1. Invention and Early History of Gapmers.
    Lim KRQ; Yokota T
    Methods Mol Biol; 2020; 2176():3-19. PubMed ID: 32865779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Clinical Applications of Antisense Oligonucleotide Gapmers.
    Chan L; Yokota T
    Methods Mol Biol; 2020; 2176():21-47. PubMed ID: 32865780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knocking Down Long Noncoding RNAs Using Antisense Oligonucleotide Gapmers.
    Maruyama R; Yokota T
    Methods Mol Biol; 2020; 2176():49-56. PubMed ID: 32865781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Antisense Oligonucleotide Gapmers for the Treatment of Dyslipidemia and Lipodystrophy.
    Aslesh T; Yokota T
    Methods Mol Biol; 2020; 2176():69-85. PubMed ID: 32865783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filling the gap in LNA antisense oligo gapmers: the effects of unlocked nucleic acid (UNA) and 4'-C-hydroxymethyl-DNA modifications on RNase H recruitment and efficacy of an LNA gapmer.
    Fluiter K; Mook OR; Vreijling J; Langkjaer N; Højland T; Wengel J; Baas F
    Mol Biosyst; 2009 Aug; 5(8):838-43. PubMed ID: 19603119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-tuning of ENA gapmers as antisense oligonucleotides for sequence-specific inhibition.
    Takagi-Sato M; Tokuhiro S; Kawaida R; Koizumi M
    Oligonucleotides; 2007; 17(3):291-301. PubMed ID: 17854269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiviral Efficacy of RNase H-Dependent Gapmer Antisense Oligonucleotides against Japanese Encephalitis Virus.
    Okamoto S; Echigoya Y; Tago A; Segawa T; Sato Y; Itou T
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying and avoiding off-target effects of RNase H-dependent antisense oligonucleotides in mice.
    Hagedorn PH; Pontoppidan M; Bisgaard TS; Berrera M; Dieckmann A; Ebeling M; Møller MR; Hudlebusch H; Jensen ML; Hansen HF; Koch T; Lindow M
    Nucleic Acids Res; 2018 Jun; 46(11):5366-5380. PubMed ID: 29790953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Antisense Oligonucleotide Gapmers for the Treatment of Huntington's Disease.
    Aslesh T; Yokota T
    Methods Mol Biol; 2020; 2176():57-67. PubMed ID: 32865782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gapmer Antisense Oligonucleotides Containing 2',3'-Dideoxy-2'-fluoro-3'-C-hydroxymethyl-β-d-lyxofuranosyl Nucleotides Display Site-Specific RNase H Cleavage and Induce Gene Silencing.
    Danielsen MB; Lou C; Lisowiec-Wachnicka J; Pasternak A; Jørgensen PT; Wengel J
    Chemistry; 2020 Jan; 26(6):1368-1379. PubMed ID: 31682037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.
    Kasuya T; Hori S; Watanabe A; Nakajima M; Gahara Y; Rokushima M; Yanagimoto T; Kugimiya A
    Sci Rep; 2016 Jul; 6():30377. PubMed ID: 27461380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of GapmeRs for gene expression knockdowns in human primary resting CD4+ T cells.
    Abewe H; Deshmukh S; Mukim A; Beliakova-Bethell N
    J Immunol Methods; 2020 Jan; 476():112674. PubMed ID: 31629740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antisense locked nucleic acids efficiently suppress BCR/ABL and induce cell growth decline and apoptosis in leukemic cells.
    Rapozzi V; Cogoi S; Xodo LE
    Mol Cancer Ther; 2006 Jul; 5(7):1683-92. PubMed ID: 16891454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of ENA gapmers as fine-tuning antisense oligonucleotides with sequence-specific inhibitory activity on mouse PADI4 mRNA expression.
    Takagi-Sato M; Tokuhiro S; Kawaida R; Koizumi M
    Nucleic Acids Symp Ser (Oxf); 2006; (50):319-20. PubMed ID: 17150946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Computationally Evaluated Target Specificity in the Hepatotoxicity of Gapmer Antisense Oligonucleotides.
    Kasuya T; Kugimiya A
    Nucleic Acid Ther; 2018 Oct; 28(5):312-317. PubMed ID: 30095329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of antisense oligonucleotides stabilized by locked nucleic acids.
    Kurreck J; Wyszko E; Gillen C; Erdmann VA
    Nucleic Acids Res; 2002 May; 30(9):1911-8. PubMed ID: 11972327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2'-O-[2-[(N,N-dimethylamino)oxy]ethyl]-modified oligonucleotides inhibit expression of mRNA in vitro and in vivo.
    Prakash TP; Johnston JF; Graham MJ; Condon TP; Manoharan M
    Nucleic Acids Res; 2004; 32(2):828-33. PubMed ID: 14762210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the design horizon of antisense oligonucleotides with alpha-L-LNA.
    Frieden M; Christensen SM; Mikkelsen ND; Rosenbohm C; Thrue CA; Westergaard M; Hansen HF; Ørum H; Koch T
    Nucleic Acids Res; 2003 Nov; 31(21):6365-72. PubMed ID: 14576324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids.
    Lima WF; Crooke ST
    Biochemistry; 1997 Jan; 36(2):390-8. PubMed ID: 9003192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Gene Expression Knock-Down by Chemically and Structurally Modified Gapmer Antisense Oligonucleotides.
    Lisowiec-Wąchnicka J; Danielsen MB; Nader EA; Jørgensen PT; Wengel J; Pasternak A
    Chembiochem; 2022 Aug; 23(15):e202200168. PubMed ID: 35675170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.