BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32865782)

  • 1. Development of Antisense Oligonucleotide Gapmers for the Treatment of Huntington's Disease.
    Aslesh T; Yokota T
    Methods Mol Biol; 2020; 2176():57-67. PubMed ID: 32865782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Antisense Oligonucleotide Gapmers for the Treatment of Dyslipidemia and Lipodystrophy.
    Aslesh T; Yokota T
    Methods Mol Biol; 2020; 2176():69-85. PubMed ID: 32865783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lowering Mutant Huntingtin Using Tricyclo-DNA Antisense Oligonucleotides As a Therapeutic Approach for Huntington's Disease.
    Imbert M; Blandel F; Leumann C; Garcia L; Goyenvalle A
    Nucleic Acid Ther; 2019 Oct; 29(5):256-265. PubMed ID: 31184975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translating Antisense Technology into a Treatment for Huntington's Disease.
    Lane RM; Smith A; Baumann T; Gleichmann M; Norris D; Bennett CF; Kordasiewicz H
    Methods Mol Biol; 2018; 1780():497-523. PubMed ID: 29856033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Clinical Applications of Antisense Oligonucleotide Gapmers.
    Chan L; Yokota T
    Methods Mol Biol; 2020; 2176():21-47. PubMed ID: 32865780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose-Dependent Lowering of Mutant Huntingtin Using Antisense Oligonucleotides in Huntington Disease Patients.
    van Roon-Mom WMC; Roos RAC; de Bot ST
    Nucleic Acid Ther; 2018 Apr; 28(2):59-62. PubMed ID: 29620999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification.
    Evers MM; Tran HD; Zalachoras I; Meijer OC; den Dunnen JT; van Ommen GJ; Aartsma-Rus A; van Roon-Mom WM
    Nucleic Acid Ther; 2014 Feb; 24(1):4-12. PubMed ID: 24380395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat.
    Gagnon KT; Pendergraff HM; Deleavey GF; Swayze EE; Potier P; Randolph J; Roesch EB; Chattopadhyaya J; Damha MJ; Bennett CF; Montaillier C; Lemaitre M; Corey DR
    Biochemistry; 2010 Nov; 49(47):10166-78. PubMed ID: 21028906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting Huntingtin Expression in Patients with Huntington's Disease.
    Tabrizi SJ; Leavitt BR; Landwehrmeyer GB; Wild EJ; Saft C; Barker RA; Blair NF; Craufurd D; Priller J; Rickards H; Rosser A; Kordasiewicz HB; Czech C; Swayze EE; Norris DA; Baumann T; Gerlach I; Schobel SA; Paz E; Smith AV; Bennett CF; Lane RM;
    N Engl J Med; 2019 Jun; 380(24):2307-2316. PubMed ID: 31059641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities.
    Tabrizi SJ; Estevez-Fraga C; van Roon-Mom WMC; Flower MD; Scahill RI; Wild EJ; Muñoz-Sanjuan I; Sampaio C; Rosser AE; Leavitt BR
    Lancet Neurol; 2022 Jul; 21(7):645-658. PubMed ID: 35716694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic Update on Huntington's Disease: Symptomatic Treatments and Emerging Disease-Modifying Therapies.
    Dash D; Mestre TA
    Neurotherapeutics; 2020 Oct; 17(4):1645-1659. PubMed ID: 32705582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleic Acid Therapeutics in Huntington's Disease.
    Singh K; Roy I
    Recent Pat Biotechnol; 2019; 13(3):187-206. PubMed ID: 30747088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knocking Down Long Noncoding RNAs Using Antisense Oligonucleotide Gapmers.
    Maruyama R; Yokota T
    Methods Mol Biol; 2020; 2176():49-56. PubMed ID: 32865781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic strategies for Huntington's disease.
    Estevez-Fraga C; Flower MD; Tabrizi SJ
    Curr Opin Neurol; 2020 Aug; 33(4):508-518. PubMed ID: 32657893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Hope for Huntington's disease patients: first clinical gene silencing study in progress].
    Rollnik JD
    Fortschr Neurol Psychiatr; 2017 Aug; 85(8):463-466. PubMed ID: 28841744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligonucleotides Targeting DNA Repeats Downregulate
    Umek T; Olsson T; Gissberg O; Saher O; Zaghloul EM; Lundin KE; Wengel J; Hanse E; Zetterberg H; Vizlin-Hodzic D; Smith CIE; Zain R
    Nucleic Acid Ther; 2021 Dec; 31(6):443-456. PubMed ID: 34520257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is Huntington's disease on the threshold of a new era in treatment?
    Sandy S; Richard A
    Neurodegener Dis Manag; 2019 Oct; 9(5):255-258. PubMed ID: 31580228
    [No Abstract]   [Full Text] [Related]  

  • 18. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease.
    Stanek LM; Yang W; Angus S; Sardi PS; Hayden MR; Hung GH; Bennett CF; Cheng SH; Shihabuddin LS
    J Huntingtons Dis; 2013; 2(2):217-28. PubMed ID: 25063516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Huntingtin-Lowering Therapies for Huntington Disease: A Review of the Evidence of Potential Benefits and Risks.
    Leavitt BR; Kordasiewicz HB; Schobel SA
    JAMA Neurol; 2020 Jun; 77(6):764-772. PubMed ID: 32202594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Gene-selective treatment approaches for Huntington's disease].
    Mühlbäck A; Lindenberg KS; Saft C; Priller J; Landwehrmeyer GB
    Nervenarzt; 2020 Apr; 91(4):303-311. PubMed ID: 32179957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.