BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 32865822)

  • 1. Transoral Robotic Surgical Proficiency Via Real-Time Tactile Collision Awareness System.
    Mendelsohn AH; Kim C; Song J; Singh A; Le T; Abiri A; Berke GS; Geoghegan R
    Laryngoscope; 2020 Dec; 130 Suppl 6():S1-S17. PubMed ID: 32865822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Transoral Robotic Surgery Training Platform
    Geoghegan R; Song J; Singh A; Le T; Abiri A; Mendelsohn AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5851-5854. PubMed ID: 31947182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of transoral robotic surgery in current head & neck practice.
    Hamilton D; Paleri V
    Surgeon; 2017 Jun; 15(3):147-154. PubMed ID: 27742406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of high-fidelity simulation as a training tool in transoral robotic surgery.
    Bur AM; Gomez ED; Newman JG; Weinstein GS; O'Malley BW; Rassekh CH; Kuchenbecker KJ
    Laryngoscope; 2017 Dec; 127(12):2790-2795. PubMed ID: 28657696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraoperative image guidance in transoral robotic surgery: A pilot study.
    Ma AK; Daly M; Qiu J; Chan HHL; Goldstein DP; Irish JC; de Almeida JR
    Head Neck; 2017 Oct; 39(10):1976-1983. PubMed ID: 28755399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility and safety of transoral robotic surgery (TORS) for early hypopharyngeal cancer: a subset analysis of the Hamburg University TORS-trial.
    Lörincz BB; Busch CJ; Möckelmann N; Knecht R
    Eur Arch Otorhinolaryngol; 2015 Oct; 272(10):2993-8. PubMed ID: 25217079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective development study of the Versius Surgical System for use in transoral robotic surgery: an IDEAL stage 1/2a first in human and initial case series experience.
    Faulkner J; Arora A; McCulloch P; Robertson S; Rovira A; Ourselin S; Jeannon JP
    Eur Arch Otorhinolaryngol; 2024 May; 281(5):2667-2678. PubMed ID: 38530463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system.
    Tsang RK; Holsinger FC
    Laryngoscope; 2016 Oct; 126(10):2257-62. PubMed ID: 27312523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term swallowing performance following transoral robotic surgery for obstructive sleep apnea.
    Paker M; Duek I; Awwad F; Benyamini L; Meshyeev T; Gil Z; Cohen JT
    Laryngoscope; 2019 Feb; 129(2):422-428. PubMed ID: 30443909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transoral robotic surgery versus conventional surgery in treatment for squamous cell carcinoma of the upper aerodigestive tract.
    Hammoudi K; Pinlong E; Kim S; Bakhos D; Morinière S
    Head Neck; 2015 Sep; 37(9):1304-9. PubMed ID: 24816480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transoral Robotic Surgery.
    Yee S
    AORN J; 2017 Jan; 105(1):73-84. PubMed ID: 28034402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation and validation of clinically relevant performance metrics of simulation (CRPMS) into a novel full-immersion simulation platform for nerve-sparing robot-assisted radical prostatectomy (NS-RARP) utilizing three-dimensional printing and hydrogel casting technology.
    Witthaus MW; Farooq S; Melnyk R; Campbell T; Saba P; Mathews E; Ezzat B; Ertefaie A; Frye TP; Wu G; Rashid H; Joseph JV; Ghazi A
    BJU Int; 2020 Feb; 125(2):322-332. PubMed ID: 31677325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastrostomy in the era of minimally invasive head and neck cancer surgery.
    Frenkel CH; Yang J; Zhang M; Ferrara A; Telem DA; Samara GJ
    Laryngoscope; 2018 Apr; 128(4):847-851. PubMed ID: 28833221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in transoral robotic surgery].
    Mattheis S; Kansy B; Haßkamp P; Holtmann L; Lang S
    HNO; 2015 Nov; 63(11):752-7. PubMed ID: 26449670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a 3D-Printed Transoral Robotic Surgery Simulator Utilizing Artificial Tissue.
    Murr AT; Lumley CJ; Feins RH; Hackman TG
    Laryngoscope; 2022 Aug; 132(8):1588-1593. PubMed ID: 34882806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transoral surgery using the Flex Robotic System: Initial experience in the United States.
    Persky MJ; Issa M; Bonfili JR; Goyal N; Goldenberg D; Duvvuri U
    Head Neck; 2018 Nov; 40(11):2482-2486. PubMed ID: 30303588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Assessment of a Transoral Robotic Surgery Curriculum to Train Otolaryngology Residents.
    White J; Sharma A
    ORL J Otorhinolaryngol Relat Spec; 2018; 80(2):69-76. PubMed ID: 29847824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of a comprehensive competency-based transoral robotic surgery training curriculum with ex vivo dissection models.
    Sobel RH; Blanco R; Ha PK; Califano JA; Kumar R; Richmon JD
    Head Neck; 2016 Oct; 38(10):1553-63. PubMed ID: 27152633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.
    Dubin AK; Smith R; Julian D; Tanaka A; Mattingly P
    J Minim Invasive Gynecol; 2017; 24(7):1184-1189. PubMed ID: 28757439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postoperative hemorrhage and hospital revisit after transoral robotic surgery.
    Zenga J; Suko J; Kallogjeri D; Pipkorn P; Nussenbaum B; Jackson RS
    Laryngoscope; 2017 Oct; 127(10):2287-2292. PubMed ID: 28425577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.