These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 32865996)
21. Deciphering Changes in the Structure and IgE-Binding Ability of Ovalbumin Glycated by α-Dicarbonyl Compounds under Simulated Heating. Zhang Q; Huang Z; Li H; Cen C; Zheng R; Lili C; Zhang S; Wang Y; Fu L J Agric Food Chem; 2022 Feb; 70(6):1984-1995. PubMed ID: 35112874 [TBL] [Abstract][Full Text] [Related]
22. High-resolution mass spectrometry unveils the molecular changes of ovalbumin induced by heating and their influence on IgE binding capacity. Cherkaoui M; Tessier D; Lollier V; Larré C; Brossard C; Dijk W; Rogniaux H Food Chem; 2022 Nov; 395():133624. PubMed ID: 35820272 [TBL] [Abstract][Full Text] [Related]
23. Comparison of Glycated Ovalbumin-Monosaccharides in the Attenuation of Ovalbumin-Induced Allergic Response in a BALB/C Mouse Model. Rupa P; Mine Y J Agric Food Chem; 2019 Jul; 67(29):8138-8148. PubMed ID: 31294563 [TBL] [Abstract][Full Text] [Related]
24. Study on structural, rheological and foaming properties of ovalbumin by ultrasound-assisted glycation with xylose. Fu X; Liu Q; Tang C; Luo J; Wu X; Lu L; Cai Z Ultrason Sonochem; 2019 Nov; 58():104644. PubMed ID: 31450374 [TBL] [Abstract][Full Text] [Related]
25. Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Lin S; Lin Z; Yao G; Deng C; Yang P; Zhang X Rapid Commun Mass Spectrom; 2007; 21(23):3910-8. PubMed ID: 17990248 [TBL] [Abstract][Full Text] [Related]
26. Effects of different high-temperature conduction modes on the ovalbumin-glucose model: AGEs production and regulation of glycated ovalbumin on gut microbiota. Chen H; Zhou Y; Zhang S; Xie Z; Wen P; Wang H; Hu Y; Wu P; Liu J; Jiang Q; Tu Z Food Res Int; 2023 Nov; 173(Pt 2):113487. PubMed ID: 37803807 [TBL] [Abstract][Full Text] [Related]
27. Probing the conformational changes of ovalbumin after glycation using HDX-MS. Huang X; Tu Z; Wang H; Zhang Q; Chen Y; Shi Y; Xiao H Food Chem; 2015 Jan; 166():62-67. PubMed ID: 25053029 [TBL] [Abstract][Full Text] [Related]
28. Peptide bonds cleaved by pepsin are affected by the morphology of heat-induced ovalbumin aggregates. Suwareh O; Causeur D; Le Feunteun S; Jardin J; Briard-Bion V; Pezennec S; Nau F Food Chem; 2024 Nov; 458():140260. PubMed ID: 38944927 [TBL] [Abstract][Full Text] [Related]
29. Combined effect of glycation and sodium carbonate-bicarbonate buffer concentration on IgG binding, IgE binding and conformation of ovalbumin. Ma XJ; Gao JY; Chen HB J Sci Food Agric; 2013 Oct; 93(13):3209-15. PubMed ID: 23553593 [TBL] [Abstract][Full Text] [Related]
30. Modification of ovalbumin with a rare ketohexose through the Maillard reaction: effect on protein structure and gel properties. Sun Y; Hayakawa S; Izumori K J Agric Food Chem; 2004 Mar; 52(5):1293-9. PubMed ID: 14995136 [TBL] [Abstract][Full Text] [Related]
31. Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides. Lapolla A; Fedele D; Reitano R; Aricò NC; Seraglia R; Traldi P; Marotta E; Tonani R J Am Soc Mass Spectrom; 2004 Apr; 15(4):496-509. PubMed ID: 15047055 [TBL] [Abstract][Full Text] [Related]
32. Mechanisms of isoquercitrin attenuates ovalbumin glycation: Investigation by spectroscopy, spectrometry and molecular docking. Zhang L; Xu L; Tu ZC; Wang HH; Luo J; Ma TX Food Chem; 2020 Mar; 309():125667. PubMed ID: 31679851 [TBL] [Abstract][Full Text] [Related]
33. Enzymolysis of walnut (Juglans regia L.) meal protein: Ultrasonication-assisted alkaline pretreatment impact on kinetics and thermodynamics. Golly MK; Ma H; Yuqing D; Wu P; Dabbour M; Sarpong F; Farooq M J Food Biochem; 2019 Aug; 43(8):e12948. PubMed ID: 31368548 [TBL] [Abstract][Full Text] [Related]
34. Enzymatic hydrolysis of ovalbumin and the functional properties of the hydrolysates. Abeyrathne ED; Lee HY; Jo C; Nam KC; Ahn DU Poult Sci; 2014 Oct; 93(10):2678-86. PubMed ID: 25085935 [TBL] [Abstract][Full Text] [Related]
35. Identification of IgE-binding peptides in hen egg ovalbumin digested in vitro with human and simulated gastroduodenal fluids. Benedé S; López-Expósito I; López-Fandiño R; Molina E J Agric Food Chem; 2014 Jan; 62(1):152-8. PubMed ID: 24350835 [TBL] [Abstract][Full Text] [Related]
36. Liquid-chromatographic and mass-spectrometric identification of lens proteins using microwave-assisted digestion with trypsin-immobilized magnetic nanoparticles. Miao A; Dai Y; Ji Y; Jiang Y; Lu Y Biochem Biophys Res Commun; 2009 Mar; 380(3):603-8. PubMed ID: 19285008 [TBL] [Abstract][Full Text] [Related]
37. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity. Tang CC; Shi YJ; Chen YJ; Chang LS Int J Mol Sci; 2017 Feb; 18(3):. PubMed ID: 28264493 [TBL] [Abstract][Full Text] [Related]
38. Protein acidification and hydrolysis by pepsin ensure efficient trypsin-catalyzed hydrolysis. Rivera Del Rio A; Keppler JK; Boom RM; Janssen AEM Food Funct; 2021 May; 12(10):4570-4581. PubMed ID: 33908536 [TBL] [Abstract][Full Text] [Related]
39. Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes. Wang B; Shangguan L; Wang S; Zhang L; Zhang W; Liu F J Chromatogr A; 2016 Dec; 1477():22-29. PubMed ID: 27884426 [TBL] [Abstract][Full Text] [Related]
40. Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion. Pan Y; Cheng K; Mao J; Liu F; Liu J; Ye M; Zou H Anal Bioanal Chem; 2014 Oct; 406(25):6247-56. PubMed ID: 25134673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]