BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 3286617)

  • 1. Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion.
    Ohsumi Y; Kitamoto K; Anraku Y
    J Bacteriol; 1988 Jun; 170(6):2676-82. PubMed ID: 3286617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae.
    Kitamoto K; Yoshizawa K; Ohsumi Y; Anraku Y
    J Bacteriol; 1988 Jun; 170(6):2683-6. PubMed ID: 3131304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of vacuolar arginine uptake and amino acid efflux in Neurospora crassa using cupric ion to permeabilize the plasma membrane.
    Keenan KA; Weiss RL
    Fungal Genet Biol; 1997 Dec; 22(3):177-90. PubMed ID: 9454645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of stimulation of Ca2+ uptake by miconazole and ethidium bromide in yeasts: role of vacuoles in Ca2+ detoxification.
    Eilam Y; Lavi H; Grossowicz N
    Microbios; 1985; 44(177):51-66. PubMed ID: 2870412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Ohsumi Y; Anraku Y
    J Biol Chem; 1981 Mar; 256(5):2079-82. PubMed ID: 6450764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple and specific procedure to permeabilize the plasma membrane of Schizosaccharomyces pombe.
    Chardwiriyapreecha S; Hondo K; Inada H; Chahomchuen T; Sekito T; Iwaki T; Kakinuma Y
    Biosci Biotechnol Biochem; 2009 Sep; 73(9):2090-5. PubMed ID: 19734666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Ohsumi Y; Anraku Y
    J Biol Chem; 1983 May; 258(9):5614-7. PubMed ID: 6343390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of Amino Acids across the Vacuolar Membrane of Yeast: Its Mechanism and Physiological Role.
    Kawano-Kawada M; Kakinuma Y; Sekito T
    Biol Pharm Bull; 2018; 41(10):1496-1501. PubMed ID: 30270317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ study of K+ transport into the vacuole of Saccharomyces cerevisiae.
    Martínez-Muñoz GA; Peña A
    Yeast; 2005 Jul; 22(9):689-704. PubMed ID: 16034802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition.
    Avery SV; Howlett NG; Radice S
    Appl Environ Microbiol; 1996 Nov; 62(11):3960-6. PubMed ID: 8899983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae.
    Sekito T; Chardwiriyapreecha S; Sugimoto N; Ishimoto M; Kawano-Kawada M; Kakinuma Y
    Biosci Biotechnol Biochem; 2014; 78(6):969-75. PubMed ID: 25036121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of cellular Ca2+ by yeast vacuoles.
    Dunn T; Gable K; Beeler T
    J Biol Chem; 1994 Mar; 269(10):7273-8. PubMed ID: 8125940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic compartmentation of vacuolar amino acids in Penicillium cyclopium. Cytosolic adenylates act as a control signal for efflux into the cytosol.
    Roos W; Schulze R; Steighardt J
    J Biol Chem; 1997 Jun; 272(25):15849-55. PubMed ID: 9188483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Expression and Characterization of Schizosaccharomyces pombe Avt3p as a Vacuolar Amino Acid Exporter in Saccharomyces cerevisiae.
    Chardwiriyapreecha S; Manabe K; Iwaki T; Kawano-Kawada M; Sekito T; Lunprom S; Akiyama K; Takegawa K; Kakinuma Y
    PLoS One; 2015; 10(6):e0130542. PubMed ID: 26083598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity.
    Gerasimaitė R; Sharma S; Desfougères Y; Schmidt A; Mayer A
    J Cell Sci; 2014 Dec; 127(Pt 23):5093-104. PubMed ID: 25315834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper uptake in wild type and copper metallothionein-deficient Saccharomyces cerevisiae. Kinetics and mechanism.
    Lin CM; Kosman DJ
    J Biol Chem; 1990 Jun; 265(16):9194-200. PubMed ID: 2188974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-Activated K+ Channels and Calcium-Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell Vacuoles Implicated in the Control of Stomatal Closure.
    Ward JM; Schroeder JI
    Plant Cell; 1994 May; 6(5):669-683. PubMed ID: 12244253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular potassium and sodium distribution in Saccharomyces cerevisiae wild-type and vacuolar mutants.
    Herrera R; Álvarez MC; Gelis S; Ramos J
    Biochem J; 2013 Sep; 454(3):525-32. PubMed ID: 23829444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a specific transport system for arginine in isolated yeast vacuoles.
    Boller T; Dürr M; Wiemken A
    Eur J Biochem; 1975 May; 54(1):81-91. PubMed ID: 238849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.