These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3286619)

  • 21. Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides light-harvesting B800-850-alpha and B800-850-beta genes.
    Kiley PJ; Kaplan S
    J Bacteriol; 1987 Jul; 169(7):3268-75. PubMed ID: 3036782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: evidence for its interaction with the alpha-polypeptide of the core light-harvesting complex.
    Recchia PA; Davis CM; Lilburn TG; Beatty JT; Parkes-Loach PS; Hunter CN; Loach PA
    Biochemistry; 1998 Aug; 37(31):11055-63. PubMed ID: 9693001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects on the formation of antenna complex B870 of Rhodobacter capsulatus by exchange of charged amino acids in the N-terminal domain of the alpha and beta pigment-binding proteins.
    Dörge B; Klug G; Gad'on N; Cohen SN; Drews G
    Biochemistry; 1990 Aug; 29(33):7754-8. PubMed ID: 2271533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 1. Minimal requirements for subunit formation.
    Meadows KA; Parkes-Loach PS; Kehoe JW; Loach PA
    Biochemistry; 1998 Mar; 37(10):3411-7. PubMed ID: 9521662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and complete amino acid sequence of the beta- and alpha-polypeptides from the peripheral light-harvesting pigment-protein complex II of Rhodobacter sulfidophilus.
    Tadros MH; Hagemann GE; Katsiou E; Dierstein R; Schiltz E
    FEBS Lett; 1995 Jul; 368(2):243-7. PubMed ID: 7628614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of betaArg-10 in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides.
    Fowler GJ; Hess S; Pullerits T; Sundström V; Hunter CN
    Biochemistry; 1997 Sep; 36(37):11282-91. PubMed ID: 9287171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of apparent membrane growth initiation sites during photosynthetic membrane development in synchronously dividing Rhodopseudomonas sphaeroides.
    Reilly PA; Niederman RA
    J Bacteriol; 1986 Jul; 167(1):153-9. PubMed ID: 3522542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of photosynthetic reaction center H protein domain mutations on photosynthetic properties and reaction center assembly in Rhodobacter sphaeroides.
    Tehrani A; Prince RC; Beatty JT
    Biochemistry; 2003 Aug; 42(30):8919-28. PubMed ID: 12885224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteolytic modifications of the B800-860 complex of the photosynthetic bacterium Rhodocyclus tenuis: Structural and spectral effects.
    Hu O; Brunisholz RA; Zuber H
    Photosynth Res; 1996 Dec; 50(3):223-32. PubMed ID: 24271961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solution structures of the core light-harvesting alpha and beta polypeptides from Rhodospirillum rubrum: implications for the pigment-protein and protein-protein interactions.
    Wang ZY; Gokan K; Kobayashi M; Nozawa T
    J Mol Biol; 2005 Mar; 347(2):465-77. PubMed ID: 15740753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and expression of cysteine-bearing hydrophobic polypeptides and their self-assembling properties with bacteriochlorophyll a derivatives as a mimic of bacterial photosynthetic antenna complexes. Effect of steric confinement and orientation of the polypeptides on the pigment/polypeptide assembly process.
    Dewa T; Yamada T; Ogawa M; Sugimoto M; Mizuno T; Yoshida K; Nakao Y; Kondo M; Iida K; Yamashita K; Tanaka T; Nango M
    Biochemistry; 2005 Apr; 44(13):5129-39. PubMed ID: 15794650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and transcription of the genes encoding the B1015 light-harvesting complex beta and alpha subunits and the photosynthetic reaction center L, M, and cytochrome c subunits from Rhodopseudomonas viridis.
    Wiessner C; Dunger I; Michel H
    J Bacteriol; 1990 Jun; 172(6):2877-87. PubMed ID: 1693143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Posttranscriptional control of puc operon expression of B800-850 light-harvesting complex formation in Rhodobacter sphaeroides.
    Lee JK; Kiley PJ; Kaplan S
    J Bacteriol; 1989 Jun; 171(6):3391-405. PubMed ID: 2470727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of Rhodopseudomonas sphaeroides chromatophore membrane asymmetry through bilateral antiserum adsorption studies.
    Collins ML; Mallon DE; Niederman RA
    J Bacteriol; 1980 Jul; 143(1):221-30. PubMed ID: 6967482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localization of photosynthetic membrane components in Rhodopseudomonas sphaeroides by a radioactive labeling procedure.
    Francis GA; Richards WR
    Biochemistry; 1980 Oct; 19(22):5104-11. PubMed ID: 6970049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A light-harvesting antenna protein retains its folded conformation in the absence of protein-lipid and protein-pigment interactions.
    Kikuchi J; Asakura T; Loach PA; Parkes-Loach PS; Shimada K; Hunter CN; Conroy MJ; Williamson MP
    Biopolymers; 1999 Apr; 49(5):361-72. PubMed ID: 10101971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components.
    Todd JB; Parkes-Loach PS; Leykam JF; Loach PA
    Biochemistry; 1998 Dec; 37(50):17458-68. PubMed ID: 9860861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability.
    Yeliseev AA; Eraso JM; Kaplan S
    J Bacteriol; 1996 Oct; 178(20):5877-83. PubMed ID: 8830681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential protein insertion into developing photosynthetic membrane regions of Rhodopseudomonas sphaeroides.
    Inamine GS; Reilly PA; Niederman RA
    J Cell Biochem; 1984; 24(1):69-77. PubMed ID: 6609927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA sequence and in vitro expression of the B875 light-harvesting polypeptides of Rhodobacter sphaeroides.
    Kiley PJ; Donohue TJ; Havelka WA; Kaplan S
    J Bacteriol; 1987 Feb; 169(2):742-50. PubMed ID: 3027044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.