These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. McNiven MA; Wang M; Porter KR Cell; 1984 Jul; 37(3):753-65. PubMed ID: 6744413 [TBL] [Abstract][Full Text] [Related]
6. Effect of colcemid on the centrosome and microtubules in dermal melanophores of Xenopus laevis larvae in vivo. Rubin KA; Starodubov SM; Onishchenko GE Cell Mol Biol (Noisy-le-grand); 1999 Nov; 45(7):1099-117. PubMed ID: 10644015 [TBL] [Abstract][Full Text] [Related]
7. Identification of microtubule-organizing centers in interphase melanophores of Xenopus laevis larvae in vivo. Rubina KA; Gulak PV; Smirnova EA; Starodubov SM; Onishchenko GE Pigment Cell Res; 1999 Oct; 12(5):295-310. PubMed ID: 10541039 [TBL] [Abstract][Full Text] [Related]
8. Evidence for rapid structural and functional changes of the melanophore microtubule-organizing center upon pigment movements. Schliwa M; Euteneuer U; Herzog W; Weber K J Cell Biol; 1979 Dec; 83(3):623-32. PubMed ID: 521456 [TBL] [Abstract][Full Text] [Related]
9. Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Malikov V; Cytrynbaum EN; Kashina A; Mogilner A; Rodionov V Nat Cell Biol; 2005 Dec; 7(12):1213-8. PubMed ID: 16273095 [TBL] [Abstract][Full Text] [Related]
10. Microtubule system of isolated fish melanophores as revealed by immunofluorescence microscopy. Schliwa M; Osborn M; Weber K J Cell Biol; 1978 Jan; 76(1):229-36. PubMed ID: 338618 [TBL] [Abstract][Full Text] [Related]
11. Kinesin is responsible for centrifugal movement of pigment granules in melanophores. Rodionov VI; Gyoeva FK; Gelfand VI Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4956-60. PubMed ID: 1828887 [TBL] [Abstract][Full Text] [Related]
12. Stereo high voltage electron microscopy of melanophores. Matrix transformations during pigment movements and the effects of cold and colchicine. Schliwa M Exp Cell Res; 1979 Feb; 118(2):323-40. PubMed ID: 570110 [No Abstract] [Full Text] [Related]
13. [The spatial organization of centrosome-attached and free microtubules in 3T3 fibroblasts]. Alieva IB; Borisy GG; Vorob'ev IA Tsitologiia; 2008; 50(11):936-46. PubMed ID: 19140339 [TBL] [Abstract][Full Text] [Related]
14. [Dynamics of the redistribution of pigment granules in the dermal melanophores of anuran amphibians. 1. Dispersion]. Nikeriasova EN; Golichenkov VA; Dorfman IaG Ontogenez; 1984; 15(6):616-25. PubMed ID: 6521976 [TBL] [Abstract][Full Text] [Related]
16. Nonlocal mechanism of self-organization and centering of microtubule asters. Cytrynbaum EN; Rodionov V; Mogilner A Bull Math Biol; 2006 Jul; 68(5):1053-72. PubMed ID: 16832739 [TBL] [Abstract][Full Text] [Related]
17. Computational model of dynein-dependent self-organization of microtubule asters. Cytrynbaum EN; Rodionov V; Mogilner A J Cell Sci; 2004 Mar; 117(Pt 8):1381-97. PubMed ID: 14996905 [TBL] [Abstract][Full Text] [Related]
18. In vitro reconstitution of fish melanophore pigment aggregation. Nilsson H; Steffen W; Palazzo RE Cell Motil Cytoskeleton; 2001 Jan; 48(1):1-10. PubMed ID: 11124706 [TBL] [Abstract][Full Text] [Related]
19. Unidirectional microtubule assembly in cell-free extracts of Spisula solidissima oocytes is regulated by subtle changes in pH. Suprenant KA Cell Motil Cytoskeleton; 1991; 19(3):207-20. PubMed ID: 1878990 [TBL] [Abstract][Full Text] [Related]
20. The role of microtubules in the movement of pigment granules in teleost melanophores. Murphy DB; Tilney LG J Cell Biol; 1974 Jun; 61(3):757-79. PubMed ID: 4836391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]