These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 32866870)
1. Effects of microplastics exposure on ingestion, fecundity, development, and dimethylsulfide production in Tigriopus japonicus (Harpacticoida, copepod). Yu J; Tian JY; Xu R; Zhang ZY; Yang GP; Wang XD; Lai JG; Chen R Environ Pollut; 2020 Dec; 267():115429. PubMed ID: 32866870 [TBL] [Abstract][Full Text] [Related]
2. Smells good enough to eat: Dimethyl sulfide (DMS) enhances copepod ingestion of microplastics. Procter J; Hopkins FE; Fileman ES; Lindeque PK Mar Pollut Bull; 2019 Jan; 138():1-6. PubMed ID: 30660250 [TBL] [Abstract][Full Text] [Related]
3. Acute and chronic combined effect of polystyrene microplastics and dibutyl phthalate on the marine copepod Tigriopus japonicus. Li Z; Zhou H; Liu Y; Zhan J; Li W; Yang K; Yi X Chemosphere; 2020 Dec; 261():127711. PubMed ID: 32731021 [TBL] [Abstract][Full Text] [Related]
4. Transgenerational Proteome Plasticity in Resilience of a Marine Copepod in Response to Environmentally Relevant Concentrations of Microplastics. Zhang C; Jeong CB; Lee JS; Wang D; Wang M Environ Sci Technol; 2019 Jul; 53(14):8426-8436. PubMed ID: 31246436 [TBL] [Abstract][Full Text] [Related]
5. Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus. Coppock RL; Galloway TS; Cole M; Fileman ES; Queirós AM; Lindeque PK Sci Total Environ; 2019 Oct; 687():780-789. PubMed ID: 31412481 [TBL] [Abstract][Full Text] [Related]
6. Chronic effects of nano and microplastics on reproduction and development of marine copepod Tigriopus japonicus. Kim K; Yoon H; Choi JS; Jung YJ; Park JW Ecotoxicol Environ Saf; 2022 Sep; 243():113962. PubMed ID: 35988379 [TBL] [Abstract][Full Text] [Related]
7. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Lee KW; Shim WJ; Kwon OY; Kang JH Environ Sci Technol; 2013 Oct; 47(19):11278-83. PubMed ID: 23988225 [TBL] [Abstract][Full Text] [Related]
8. Effects of nanoplastics exposure on ingestion, life history traits, and dimethyl sulfide production in rotifer Brachionus plicatilis. Yu J; Wang S; Zhang HQ; Song XR; Liu LF; Jiang Y; Chen R; Zhang Q; Chen YQ; Zhou HJ; Yang GP Environ Pollut; 2024 Mar; 344():123308. PubMed ID: 38185352 [TBL] [Abstract][Full Text] [Related]
9. Low microalgae availability increases the ingestion rates and potential effects of microplastics on marine copepod Pseudodiaptomus annandalei. Cheng Y; Wang J; Yi X; Li L; Liu X; Ru S Mar Pollut Bull; 2020 Mar; 152():110919. PubMed ID: 32479292 [TBL] [Abstract][Full Text] [Related]
10. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Cole M; Lindeque P; Fileman E; Halsband C; Galloway TS Environ Sci Technol; 2015 Jan; 49(2):1130-7. PubMed ID: 25563688 [TBL] [Abstract][Full Text] [Related]
11. Ingestion and impact of microplastics on arctic Calanus copepods. Rodríguez-Torres R; Almeda R; Kristiansen M; Rist S; Winding MS; Nielsen TG Aquat Toxicol; 2020 Nov; 228():105631. PubMed ID: 32992089 [TBL] [Abstract][Full Text] [Related]
12. Developmental retardation, reduced fecundity, and modulated expression of the defensome in the intertidal copepod Tigriopus japonicus exposed to BDE-47 and PFOS. Han J; Won EJ; Lee MC; Seo JS; Lee SJ; Lee JS Aquat Toxicol; 2015 Aug; 165():136-43. PubMed ID: 26037098 [TBL] [Abstract][Full Text] [Related]
13. Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa. Bellas J; Gil I Environ Pollut; 2020 May; 260():114059. PubMed ID: 32004970 [TBL] [Abstract][Full Text] [Related]
14. Effects of microplastics on marine copepods. Bai Z; Wang N; Wang M Ecotoxicol Environ Saf; 2021 Jul; 217():112243. PubMed ID: 33915449 [TBL] [Abstract][Full Text] [Related]
15. Impact of polystyrene microplastics on major marine primary (phytoplankton) and secondary producers (copepod). Raju P; Santhanam P; Pandian SS; Divya M; Arunkrishnan A; Devi KN; Ananth S; Roopavathy J; Perumal P Arch Microbiol; 2021 Dec; 204(1):84. PubMed ID: 34958418 [TBL] [Abstract][Full Text] [Related]
16. Microplastic ingestion induces energy loss on the copepod Tigriopus koreanus. Park JG; Kang HM; Park Y; Hwang JW; Baek SH; Lim YK; Lee KW Ecotoxicol Environ Saf; 2024 Oct; 285():117056. PubMed ID: 39303632 [TBL] [Abstract][Full Text] [Related]
17. Impacts of nano- and micro-plastics exposure on zooplankton grazing, bacterial communities, and dimethylated sulfur compounds production in the microcosms. Jiang Y; Yu J; Chen R; Wang S; Yang GP; Liu LF; Song XR Environ Pollut; 2024 Nov; 360():124649. PubMed ID: 39095004 [TBL] [Abstract][Full Text] [Related]
18. Aging of microplastics promotes their ingestion by marine zooplankton. Vroom RJE; Koelmans AA; Besseling E; Halsband C Environ Pollut; 2017 Dec; 231(Pt 1):987-996. PubMed ID: 28898955 [TBL] [Abstract][Full Text] [Related]
19. Toxic effects of polyethylene terephthalate microparticles and Di(2-ethylhexyl)phthalate on the calanoid copepod, Parvocalanus crassirostris. Heindler FM; Alajmi F; Huerlimann R; Zeng C; Newman SJ; Vamvounis G; van Herwerden L Ecotoxicol Environ Saf; 2017 Jul; 141():298-305. PubMed ID: 28365455 [TBL] [Abstract][Full Text] [Related]
20. Nanoplastics pose a greater effect than microplastics in enhancing mercury toxicity to marine copepods. Bai Z; Zhang Y; Cheng L; Zhou X; Wang M Chemosphere; 2023 Jun; 325():138371. PubMed ID: 36906006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]