These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32866930)

  • 1. Energy recovery through reverse electrodialysis: Harnessing the salinity gradient from the flushing of human urine.
    Volpin F; Woo YC; Kim H; Freguia S; Jeong N; Choi JS; Cho J; Phuntsho S; Shon HK
    Water Res; 2020 Nov; 186():116320. PubMed ID: 32866930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced energy recovery using a cascaded reverse electrodialysis stack for salinity gradient power generation.
    Nam JY; Jwa E; Eom H; Kim H; Hwang K; Jeong N
    Water Res; 2021 Jul; 200():117255. PubMed ID: 34062402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage.
    Zhu X; Kim T; Rahimi M; Gorski CA; Logan BE
    ChemSusChem; 2017 Feb; 10(4):797-803. PubMed ID: 27911491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid membrane distillation reverse electrodialysis configuration for water and energy recovery from human urine: An opportunity for off-grid decentralised sanitation.
    Mercer E; Davey CJ; Azzini D; Eusebi AL; Tierney R; Williams L; Jiang Y; Parker A; Kolios A; Tyrrel S; Cartmell E; Pidou M; McAdam EJ
    J Memb Sci; 2019 Aug; 584():343-352. PubMed ID: 31423048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Control of Irreversible Faradic Reactions to Enhance the Performance of Reverse Electrodialysis for Energy Production from Salinity Gradients.
    Oh Y; Han JH; Kim H; Jeong N; Vermaas DA; Park JS; Chae S
    Environ Sci Technol; 2021 Aug; 55(16):11388-11396. PubMed ID: 34310128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of energy from salinity gradients using capacitive reverse electro dialysis: a review.
    Ramasamy G; Rajkumar PK; Narayanan M
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63672-63681. PubMed ID: 33400126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating reverse electrodialysis with constant current operating capacitive deionization.
    Jande YAC; Kim WS
    J Environ Manage; 2014 Dec; 146():463-469. PubMed ID: 25150096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial reverse electrodialysis cells for synergistically enhanced power production.
    Kim Y; Logan BE
    Environ Sci Technol; 2011 Jul; 45(13):5834-9. PubMed ID: 21644573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells.
    Cusick RD; Kim Y; Logan BE
    Science; 2012 Mar; 335(6075):1474-7. PubMed ID: 22383807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a process for the treatment of synthetic wastewater without energy inputs using the salinity gradient of wastewaters and a reverse electrodialysis stack.
    Ma P; Hao X; Galia A; Scialdone O
    Chemosphere; 2020 Jun; 248():125994. PubMed ID: 32035382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-run operation of a reverse electrodialysis system fed with wastewaters.
    Luque Di Salvo J; Cosenza A; Tamburini A; Micale G; Cipollina A
    J Environ Manage; 2018 Jul; 217():871-887. PubMed ID: 29660712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO
    Moreno J; de Hart N; Saakes M; Nijmeijer K
    Water Res; 2017 Nov; 125():23-31. PubMed ID: 28834766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
    Yip NY; Brogioli D; Hamelers HV; Nijmeijer K
    Environ Sci Technol; 2016 Nov; 50(22):12072-12094. PubMed ID: 27718544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reverse electrodialysis driven electrochemical process assisted by anodic photocatalysis for hydrogen peroxide production.
    Xu P; Xu H; Zheng D; Ma J; Hou B
    Chemosphere; 2019 Dec; 237():124509. PubMed ID: 31400741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable energy harvesting and on-site disinfection of natural seawater using reverse electrodialysis.
    Jwa E; Jeong N; Nam JY; Han JI
    Water Res; 2022 Jul; 220():118681. PubMed ID: 35689894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations of Ion Composition and Power Efficiency in a Reverse Electrodialysis Heat Engine.
    Luo F; Wang Y; Sha M; Wei Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31766700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale-up of reverse electrodialysis for energy generation from high concentration salinity gradients.
    Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ
    J Memb Sci; 2021 Jun; 627():119245. PubMed ID: 34083864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doubled power density from salinity gradients at reduced intermembrane distance.
    Vermaas DA; Saakes M; Nijmeijer K
    Environ Sci Technol; 2011 Aug; 45(16):7089-95. PubMed ID: 21736348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.