These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32866930)

  • 21. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.
    Luo X; Zhang F; Liu J; Zhang X; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(15):8911-8. PubMed ID: 25010133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).
    Pawlowski S; Galinha CF; Crespo JG; Velizarov S
    Water Res; 2016 Jan; 88():184-198. PubMed ID: 26497936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Response of salinity gradient power generation to inflow mode and temperature difference by reverse electrodialysis.
    Cui WZ; Ji ZY; Tumba K; Zhang ZD; Wang J; Zhang ZX; Liu J; Zhao YY; Yuan JS
    J Environ Manage; 2022 Feb; 303():114124. PubMed ID: 34839173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant.
    Veerman J; Saakes M; Metz SJ; Harmsen GJ
    Environ Sci Technol; 2010 Dec; 44(23):9207-12. PubMed ID: 20964356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effect of Feed Solution Temperature on the Power Output Performance of a Pilot-Scale Reverse Electrodialysis (RED) System with Different Intermediate Distance.
    Mehdizadeh S; Yasukawa M; Abo T; Kuno M; Noguchi Y; Higa M
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31216734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse electrodialysis performed at pilot plant scale: Evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater.
    D'Angelo A; Tedesco M; Cipollina A; Galia A; Micale G; Scialdone O
    Water Res; 2017 Nov; 125():123-131. PubMed ID: 28843152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Concentrating nutrients and recovering water and energy from source separated urine using osmotic microbial fuel cell.
    Gangadharan P; Vadekeetil A; Sibi R; Sheelam A
    Chemosphere; 2021 Dec; 285():131548. PubMed ID: 34329146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature effects on energy production by salinity exchange.
    Ahualli S; Fernández MM; Iglesias G; Delgado Á; Jiménez ML
    Environ Sci Technol; 2014 Oct; 48(20):12378-85. PubMed ID: 25230095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.
    Bui TQ; Cao VD; Do NBD; Christoffersen TE; Wang W; Kjøniksen AL
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22218-22225. PubMed ID: 29883097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy recovery from solutions with different salinities based on swelling and shrinking of hydrogels.
    Zhu X; Yang W; Hatzell MC; Logan BE
    Environ Sci Technol; 2014 Jun; 48(12):7157-63. PubMed ID: 24863559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients.
    Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ
    Energy Convers Manag; 2021 Sep; 244():None. PubMed ID: 34538999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Miniaturized Salinity Gradient Energy Harvesting Devices.
    Hsu WS; Preet A; Lin TY; Lin TE
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient purification and chemical energy recovery from urine by using a denitrifying fuel cell.
    Shen Z; Bai J; Zhang Y; Li J; Zhou T; Wang J; Xu Q; Zhou B
    Water Res; 2019 Apr; 152():117-125. PubMed ID: 30665158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for
    Pham HT; Vu PH; Nguyen TTT; Bui HVT; Tran HTT; Tran HM; Nguyen HQ; Kim BH
    J Microbiol Biotechnol; 2019 Oct; 29(10):1607-1623. PubMed ID: 31474095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reverse Electrodialysis Chemical Cell for Energy Harvesting from Controlled Acid-Base Neutralization.
    Mei Y; Liu L; Lu YC; Tang CY
    Environ Sci Technol; 2019 Apr; 53(8):4640-4647. PubMed ID: 30916548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surveying Manganese Oxides as Electrode Materials for Harnessing Salinity Gradient Energy.
    Fortunato J; Peña J; Benkaddour S; Zhang H; Huang J; Zhu M; Logan BE; Gorski CA
    Environ Sci Technol; 2020 May; 54(9):5746-5754. PubMed ID: 32250598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution.
    Nam JY; Cusick RD; Kim Y; Logan BE
    Environ Sci Technol; 2012 May; 46(9):5240-6. PubMed ID: 22463373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical Ammonia Recovery from Source-Separated Urine for Microbial Protein Production.
    Christiaens MER; Gildemyn S; Matassa S; Ysebaert T; De Vrieze J; Rabaey K
    Environ Sci Technol; 2017 Nov; 51(22):13143-13150. PubMed ID: 29112388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic ureolysis of source-separated urine for NH
    Christiaens MER; De Vrieze J; Clinckemaillie L; Ganigué R; Rabaey K
    Water Res; 2019 Jan; 148():97-105. PubMed ID: 30352325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Managing power dissipation in closed-loop reverse electrodialysis to maximise energy recovery during thermal-to-electric conversion.
    Hulme AM; Davey CJ; Parker A; Williams L; Tyrrel S; Jiang Y; Pidou M; McAdam EJ
    Desalination; 2020 Dec; 496():114711. PubMed ID: 33335330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.