These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32866941)

  • 1. Characteristics of high-temperature equipment monitoring using dry-coupled ultrasonic waveguide transducers.
    Liao Z; Zhang X; Liu T; Jia J; Tu ST
    Ultrasonics; 2020 Dec; 108():106236. PubMed ID: 32866941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brazing Coupling Performance of Piezoelectric Waveguide Transducers for the Monitoring of High Temperature Components.
    Jia JH; Wang ZH; Yao DF; Tu ST
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-temperature (>500°c) wall thickness monitoring using dry-coupled ultrasonic waveguide transducers.
    Cegla FB; Cawley P; Allin J; Davies J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):156-67. PubMed ID: 21244983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Design Methodology of Tapered Waveguide Transducers for Thickness Monitoring.
    Jia J; Ren Y; Wang W; Liao Z; Zhang X; Tu ST
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Waveguide Bars for Transmitting a Pure Shear Horizontal Wave to Monitor High Temperature Components.
    Jia J; Wang Q; Liao Z; Tu Y; Tu ST
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28869554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical Excitation of the Fundamental Quasi-Shear Mode Wave in Waveguide Bars for Elevated Temperature Applications.
    Jia J; Liao Z; Cai X; Tu Y; Tu ST
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State-of-the-Art and Practical Guide to Ultrasonic Transducers for Harsh Environments Including Temperatures above 2120 °F (1000 °C) and Neutron Flux above 10
    Tittmann BR; Batista CFG; Trivedi YP; Lissenden Iii CJ; Reinhardt BT
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31683921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear horizontal wave transducers for structural health monitoring and nondestructive testing: A review.
    Miao H; Li F
    Ultrasonics; 2021 Jul; 114():106355. PubMed ID: 33581412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel strip waveguide for ultrasonic flow measurement in harsh environments.
    Laws M; Ramadas SN; Lynnworth LC; Dixon S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):697-708. PubMed ID: 25881347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Temperature Ultrasonic Transducers: A Review.
    Kazys R; Vaskeliene V
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34062979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of Shear Horizontal Wave Transducers for Robotic Nondestructive Inspection in Harsh Environments.
    Choi S; Cho H; Lissenden CJ
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28025508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Line Monitoring of Pipe Wall Thinning by a High Temperature Ultrasonic Waveguide System at the Flow Accelerated Corrosion Proof Facility.
    Oh SB; Cheong YM; Kim DJ; Kim KM
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception.
    Sha G; Lissenden CJ
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constrained thickness-shear vibration-based piezoelectric transducers for generating unidirectional-propagation SH
    Cai J; Du Y; Kan Q; Zhang Q; Miao H; Kang G
    Ultrasonics; 2023 Sep; 134():107106. PubMed ID: 37467523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of thermal stress in metal plates by using bonded shear horizontal wave piezoelectric transducers.
    Chen M; Qiu H; Li F
    Ultrasonics; 2023 Mar; 129():106905. PubMed ID: 36481720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic Acoustic Transducers for Robotic Nondestructive Inspection in Harsh Environments.
    Choi S; Cho H; Lindsey MS; Lissenden CJ
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29324721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated high-temperature piezoelectric plate acoustic wave transducers using mode conversion.
    Wu KT; Kobayashi M; Jen CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jun; 56(6):1218-24. PubMed ID: 19574129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements.
    Loveday PW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2045-51. PubMed ID: 18019242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear Bloch waves and coupled phonon-polariton in periodic piezoelectric waveguides.
    Piliposyan DG; Ghazaryan KB; Piliposian GT
    Ultrasonics; 2014 Feb; 54(2):644-54. PubMed ID: 24139302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waveguide tapering for beam-width control in a waveguide transducer.
    Kwon YE; Jeon HJ; Kim HW; Kim YY
    Ultrasonics; 2014 Mar; 54(3):953-60. PubMed ID: 24314914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.