BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32867099)

  • 1. Biomechanics of the Human Middle Ear with Viscoelasticity of the Maxwell and the Kelvin-Voigt Type and Relaxation Effect.
    Rusinek R; Szymanski M; Zablotni R
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32867099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental validation for the interconversion between generalized Kelvin-Voigt and Maxwell models using human skin tissues.
    Kim JH; Yang D; Park S
    J Biomech; 2024 Jan; 162():111908. PubMed ID: 38142667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforced active middle ear implant fixation in incus vibroplasty.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Hagen R; Gummer AW; Schraven SP
    Ear Hear; 2015 Jan; 36(1):72-81. PubMed ID: 25099400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization.
    Jóźwiak B; Orczykowska M; Dziubiński M
    PLoS One; 2015; 10(11):e0143090. PubMed ID: 26599756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between classical Kelvin-Voigt and fractional derivative Kelvin-Voigt models in prediction of linear viscoelastic behaviour of waste activated sludge.
    Farno E; Baudez JC; Eshtiaghi N
    Sci Total Environ; 2018 Feb; 613-614():1031-1036. PubMed ID: 28950665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model.
    Nguyen T; Li J; Sun L; Tran D; Xuan F
    Polymers (Basel); 2021 Jul; 13(13):. PubMed ID: 34279347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.
    Zhang J; Tian J; Ta N; Huang X; Rao Z
    Proc Inst Mech Eng H; 2016 Aug; 230(8):784-94. PubMed ID: 27276992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human cornea thermo-viscoelastic behavior modelling using standard linear solid model.
    Ahmed HM; Salem NM; Al-Atabany W
    BMC Ophthalmol; 2023 Jun; 23(1):250. PubMed ID: 37277739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Viscoelasticity of Odd Materials.
    Banerjee D; Vitelli V; Jülicher F; Surówka P
    Phys Rev Lett; 2021 Apr; 126(13):138001. PubMed ID: 33861116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On modelling nonlinear viscoelastic effects in ligaments.
    Peña E; Peña JA; Doblaré M
    J Biomech; 2008 Aug; 41(12):2659-66. PubMed ID: 18672245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear viscoelasticity of suspensions of biological cells with viscoelastic membrane II.
    Abe K; Takano Y; Sakanishi A
    Biorheology; 1986; 23(1):75-87. PubMed ID: 3719093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of an active middle-ear implant to the long process of the incus using an elastic clip attachment.
    Schraven SP; Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Rak K; Radeloff A; Hagen R; Gummer AW
    Hear Res; 2016 Oct; 340():179-184. PubMed ID: 27037037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kelvin-Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography.
    Callejas A; Gomez A; Faris IH; Melchor J; Rus G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical Modelling of Porcine Kidney.
    Mishra A; Cleveland RO
    Bioengineering (Basel); 2024 May; 11(6):. PubMed ID: 38927773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indentometric analysis of in vivo skin and comparison with artificial skin models.
    Jachowicz J; McMullen R; Prettypaul D
    Skin Res Technol; 2007 Aug; 13(3):299-309. PubMed ID: 17610652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standardized Active Middle-Ear Implant Coupling to the Short Incus Process.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Rak K; Radeloff A; Hagen R; Gummer AW; Schraven SP
    Otol Neurotol; 2015 Sep; 36(8):1390-8. PubMed ID: 26247138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone conduction in Thiel-embalmed cadaver heads.
    Guignard J; Stieger C; Kompis M; Caversaccio M; Arnold A
    Hear Res; 2013 Dec; 306():115-22. PubMed ID: 24161399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on the effect of ligament and tendon detachment on human middle ear sound transfer using mathematic model.
    Xie P; Peng Y; Hu J; Yi S
    Proc Inst Mech Eng H; 2019 Aug; 233(8):784-792. PubMed ID: 31165672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.