BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 32867645)

  • 1. Neutralization of SARS-CoV-2 Spike Protein via Natural Compounds: A Multilayered High Throughput Virtual Screening Approach.
    Dhasmana A; Kashyap VK; Dhasmana S; Kotnala S; Haque S; Ashraf GM; Jaggi M; Yallapu MM; Chauhan SC
    Curr Pharm Des; 2020; 26(41):5300-5309. PubMed ID: 32867645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL
    Froggatt HM; Heaton BE; Heaton NS
    J Virol; 2020 Oct; 94(22):. PubMed ID: 32843534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular scaffolds from mother nature as possible lead compounds in drug design and discovery against coronaviruses: A landscape analysis of published literature and molecular docking studies.
    Khursheed A; Jain V; Rasool A; Rather MA; Malik NA; Shalla AH
    Microb Pathog; 2021 Aug; 157():104933. PubMed ID: 33984466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Docking and ADMET Prediction of Natural Compounds towards SARS Spike Glycoprotein-Human Angiotensin-Converting Enzyme 2 and SARS-CoV-2 Main Protease.
    Oso BJ; Olaoye IF; Omeike SO
    Arch Razi Inst; 2021; 76(3):453-459. PubMed ID: 34824739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2.
    Basu A; Sarkar A; Maulik U
    Sci Rep; 2020 Oct; 10(1):17699. PubMed ID: 33077836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity.
    Zhu Y; Yu D; Yan H; Chong H; He Y
    J Virol; 2020 Jul; 94(14):. PubMed ID: 32376627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods.
    Unni S; Aouti S; Thiyagarajan S; Padmanabhan B
    J Biosci; 2020; 45(1):. PubMed ID: 33184246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Silico Drug Repurposing for SARS-CoV-2 Main Proteinase and Spike Proteins.
    Maffucci I; Contini A
    J Proteome Res; 2020 Nov; 19(11):4637-4648. PubMed ID: 32893632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual screening and in vitro validation of natural compound inhibitors against SARS-CoV-2 spike protein.
    Power H; Wu J; Turville S; Aggarwal A; Valtchev P; Schindeler A; Dehghani F
    Bioorg Chem; 2022 Feb; 119():105574. PubMed ID: 34971947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches.
    Francés-Monerris A; Hognon C; Miclot T; García-Iriepa C; Iriepa I; Terenzi A; Grandemange S; Barone G; Marazzi M; Monari A
    J Proteome Res; 2020 Nov; 19(11):4291-4315. PubMed ID: 33119313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure based Drug Designing Approaches in SARS-CoV-2 Spike Inhibitor Design.
    Shanmugam A; Venkattappan A; Gromiha MM
    Curr Top Med Chem; 2022; 22(29):2396-2409. PubMed ID: 36330617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a Potential Peptide Inhibitor of SARS-CoV-2 Targeting its Entry into the Host Cells.
    Baig MS; Alagumuthu M; Rajpoot S; Saqib U
    Drugs R D; 2020 Sep; 20(3):161-169. PubMed ID: 32592145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Drug Candidates with Various SARS-CoV-2 Receptors: An in Silico Study to Combat COVID-19.
    Barros RO; Junior FLCC; Pereira WS; Oliveira NMN; Ramos RM
    J Proteome Res; 2020 Nov; 19(11):4567-4575. PubMed ID: 32786890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repurposing of FDA-Approved Toremifene to Treat COVID-19 by Blocking the Spike Glycoprotein and NSP14 of SARS-CoV-2.
    Martin WR; Cheng F
    J Proteome Res; 2020 Nov; 19(11):4670-4677. PubMed ID: 32907334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization Rules for SARS-CoV-2 M
    Stoddard SV; Stoddard SD; Oelkers BK; Fitts K; Whalum K; Whalum K; Hemphill AD; Manikonda J; Martinez LM; Riley EG; Roof CM; Sarwar N; Thomas DM; Ulmer E; Wallace FE; Pandey P; Roy S
    Viruses; 2020 Aug; 12(9):. PubMed ID: 32859008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug designing against NSP15 of SARS-COV2 via high throughput computational screening and structural dynamics approach.
    Batool A; Bibi N; Amin F; Kamal MA
    Eur J Pharmacol; 2021 Feb; 892():173779. PubMed ID: 33275961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases.
    Kumar V; Roy K
    SAR QSAR Environ Res; 2020 Jul; 31(7):511-526. PubMed ID: 32543892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Multi-Epitope Vaccines to Combat Emerging Coronavirus Disease 2019 (COVID-19) by Employing Immuno-Informatics Approach.
    Naz A; Shahid F; Butt TT; Awan FM; Ali A; Malik A
    Front Immunol; 2020; 11():1663. PubMed ID: 32754160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid in vitro assays for screening neutralizing antibodies and antivirals against SARS-CoV-2.
    Park JG; Oladunni FS; Chiem K; Ye C; Pipenbrink M; Moran T; Walter MR; Kobie J; Martinez-Sobrido L
    J Virol Methods; 2021 Jan; 287():113995. PubMed ID: 33068703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations.
    Abu-Saleh AAA; Awad IE; Yadav A; Poirier RA
    Phys Chem Chem Phys; 2020 Oct; 22(40):23099-23106. PubMed ID: 33025993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.