These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32867771)

  • 1. Modeling the neuro-mechanics of human balance when recovering from a fall: a continuous-time approach.
    Cerda-Lugo A; González A; Cardenas A; Piovesan D
    Biomed Eng Online; 2020 Aug; 19(1):67. PubMed ID: 32867771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Estimation of a Second Order, Double Inverted Pendulum Parameters for the study of Human Balancing.
    Cerda-Lugo A; Gonzalez A; Cardenas A; Piovesan D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4117-4120. PubMed ID: 31946776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-dependent force direction elucidates neural control of balance.
    Shiozawa K; Lee J; Russo M; Sternad D; Hogan N
    J Neuroeng Rehabil; 2021 Sep; 18(1):145. PubMed ID: 34563223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of quiet human stance: computer simulations of a triple inverted pendulum model.
    Günther M; Wagner H
    Comput Methods Biomech Biomed Engin; 2016; 19(8):819-34. PubMed ID: 26214594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-joint model of quiet, upright stance accounts for the "uncontrolled manifold" structure of joint variance.
    Reimann H; Schöner G
    Biol Cybern; 2017 Dec; 111(5-6):389-403. PubMed ID: 28924748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quiet standing: The Single Inverted Pendulum model is not so bad after all.
    Morasso P; Cherif A; Zenzeri J
    PLoS One; 2019; 14(3):e0213870. PubMed ID: 30897124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of an ankle-hip model of balance on a balance board via kinematic frequency-content.
    Chumacero-Polanco E; Yang J
    Gait Posture; 2020 Oct; 82():313-321. PubMed ID: 33010687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower limb joint-specific contributions to standing postural sway in persons with unilateral lower limb loss.
    Butowicz CM; Yoder AJ; Farrokhi S; Mazzone B; Hendershot BD
    Gait Posture; 2021 Sep; 89():109-114. PubMed ID: 34271526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple roles of active stiffness in upright balance and multidirectional sway.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2020 Dec; 124(6):1995-2011. PubMed ID: 32997568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Multi-Joint Coordination and Adaptation in Standing Balance: A Novel Device and System Identification Technique.
    Engelhart D; Schouten AC; Aarts RG; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):973-82. PubMed ID: 25423654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hip and ankle responses for reactive balance emerge from varying priorities to reduce effort and kinematic excursion: A simulation study.
    Versteeg CS; Ting LH; Allen JL
    J Biomech; 2016 Oct; 49(14):3230-3237. PubMed ID: 27543251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-contraction of ankle muscle activity during quiet standing in individuals with incomplete spinal cord injury is associated with postural instability.
    Fok KL; Lee JW; Unger J; Chan K; Musselman KE; Masani K
    Sci Rep; 2021 Oct; 11(1):19599. PubMed ID: 34599267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stiffness control of balance during quiet standing and dual task in older adults: the MOBILIZE Boston Study.
    Kang HG; Lipsitz LA
    J Neurophysiol; 2010 Dec; 104(6):3510-7. PubMed ID: 20844110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-actively controlled double-inverted-pendulum-like dynamics can minimize center of mass acceleration during human quiet standing.
    Suzuki Y; Morimoto H; Kiyono K; Morasso P; Nomura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1432-5. PubMed ID: 26736538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral effect of knee joint motion on body's center of mass during human quiet standing.
    Yamamoto A; Sasagawa S; Oba N; Nakazawa K
    Gait Posture; 2015 Jan; 41(1):291-4. PubMed ID: 25248799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of intermittent feedback control on robustness of human-like postural control system.
    Tanabe H; Fujii K; Suzuki Y; Kouzaki M
    Sci Rep; 2016 Mar; 6():22446. PubMed ID: 26931281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learned changes in the complexity of movement organization during multijoint, standing pulls.
    Lee WA; Patton JL
    Biol Cybern; 1997 Sep; 77(3):197-206. PubMed ID: 9352633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low intensity vibration of ankle muscles improves balance in elderly persons at high risk of falling.
    Toosizadeh N; Mohler J; Marlinski V
    PLoS One; 2018; 13(3):e0194720. PubMed ID: 29579098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.