These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32867824)

  • 1. CSS: cluster similarity spectrum integration of single-cell genomics data.
    He Z; Brazovskaja A; Ebert S; Camp JG; Treutlein B
    Genome Biol; 2020 Sep; 21(1):224. PubMed ID: 32867824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles.
    Jin S; Zhang L; Nie Q
    Genome Biol; 2020 Feb; 21(1):25. PubMed ID: 32014031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scMC learns biological variation through the alignment of multiple single-cell genomics datasets.
    Zhang L; Nie Q
    Genome Biol; 2021 Jan; 22(1):10. PubMed ID: 33397454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Single-Cell Clustering through Ensemble Similarity Learning.
    Jeong H; Shin S; Yeom HG
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concepts and limitations for learning developmental trajectories from single cell genomics.
    Tritschler S; Büttner M; Fischer DS; Lange M; Bergen V; Lickert H; Theis FJ
    Development; 2019 Jun; 146(12):. PubMed ID: 31249007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated analysis of multimodal single-cell data with structural similarity.
    Cao Y; Fu L; Wu J; Peng Q; Nie Q; Zhang J; Xie X
    Nucleic Acids Res; 2022 Nov; 50(21):e121. PubMed ID: 36130281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data.
    Zhu X; Li HD; Xu Y; Guo L; Wu FX; Duan G; Wang J
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30700040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking atlas-level data integration in single-cell genomics.
    Luecken MD; Büttner M; Chaichoompu K; Danese A; Interlandi M; Mueller MF; Strobl DC; Zappia L; Dugas M; Colomé-Tatché M; Theis FJ
    Nat Methods; 2022 Jan; 19(1):41-50. PubMed ID: 34949812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport.
    Demetci P; Santorella R; Sandstede B; Noble WS; Singh R
    J Comput Biol; 2022 Jan; 29(1):3-18. PubMed ID: 35050714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bioinformatic Toolkit for Single-Cell mRNA Analysis.
    Baßler K; Günther P; Schulte-Schrepping J; Becker M; Biernat P
    Methods Mol Biol; 2019; 1979():433-455. PubMed ID: 31028653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CIPR: a web-based R/shiny app and R package to annotate cell clusters in single cell RNA sequencing experiments.
    Ekiz HA; Conley CJ; Stephens WZ; O'Connell RM
    BMC Bioinformatics; 2020 May; 21(1):191. PubMed ID: 32414321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recursive Consensus Clustering for novel subtype discovery from transcriptome data.
    Sonpatki P; Shah N
    Sci Rep; 2020 Jul; 10(1):11005. PubMed ID: 32620805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.
    Kinalis S; Nielsen FC; Winther O; Bagger FO
    BMC Bioinformatics; 2019 Jul; 20(1):379. PubMed ID: 31286861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing single-cell genomics to improve the physiological fidelity of organoid-derived cell types.
    Mead BE; Ordovas-Montanes J; Braun AP; Levy LE; Bhargava P; Szucs MJ; Ammendolia DA; MacMullan MA; Yin X; Hughes TK; Wadsworth MH; Ahmad R; Rakoff-Nahoum S; Carr SA; Langer R; Collins JJ; Shalek AK; Karp JM
    BMC Biol; 2018 Jun; 16(1):62. PubMed ID: 29871632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks.
    Wang D; Hou S; Zhang L; Wang X; Liu B; Zhang Z
    Genome Biol; 2021 Feb; 22(1):63. PubMed ID: 33602306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled co-clustering-based unsupervised transfer learning for the integrative analysis of single-cell genomic data.
    Zeng P; Wangwu J; Lin Z
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33279962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation.
    Chen L; Zhai Y; He Q; Wang W; Deng M
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selecting gene features for unsupervised analysis of single-cell gene expression data.
    Sheng J; Li WV
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34351383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of PatIent-Level distances from single cell genomics and pathomics data with Optimal Transport (PILOT).
    Joodaki M; Shaigan M; Parra V; Bülow RD; Kuppe C; Hölscher DL; Cheng M; Nagai JS; Goedertier M; Bouteldja N; Tesar V; Barratt J; Roberts IS; Coppo R; Kramann R; Boor P; Costa IG
    Mol Syst Biol; 2024 Feb; 20(2):57-74. PubMed ID: 38177382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.