These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32868761)

  • 1. Entropy of a bacterial stress response is a generalizable predictor for fitness and antibiotic sensitivity.
    Zhu Z; Surujon D; Ortiz-Marquez JC; Huo W; Isberg RR; Bento J; van Opijnen T
    Nat Commun; 2020 Aug; 11(1):4365. PubMed ID: 32868761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.
    van Opijnen T; Dedrick S; Bento J
    PLoS Pathog; 2016 Sep; 12(9):e1005869. PubMed ID: 27607357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibiotics Disrupt Coordination between Transcriptional and Phenotypic Stress Responses in Pathogenic Bacteria.
    Jensen PA; Zhu Z; van Opijnen T
    Cell Rep; 2017 Aug; 20(7):1705-1716. PubMed ID: 28813680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin.
    Slager J; Kjos M; Attaiech L; Veening JW
    Cell; 2014 Apr; 157(2):395-406. PubMed ID: 24725406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial gene amplification: implications for the evolution of antibiotic resistance.
    Sandegren L; Andersson DI
    Nat Rev Microbiol; 2009 Aug; 7(8):578-88. PubMed ID: 19609259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The expression of antibiotic resistance genes in antibiotic-producing bacteria.
    Mak S; Xu Y; Nodwell JR
    Mol Microbiol; 2014 Aug; 93(3):391-402. PubMed ID: 24964724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa.
    Qi Q; Preston GM; MacLean RC
    mBio; 2014 Dec; 5(6):e01562. PubMed ID: 25491352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic regulation of antibiotic resistance.
    Martínez JL; Rojo F
    FEMS Microbiol Rev; 2011 Sep; 35(5):768-89. PubMed ID: 21645016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous macrolide resistance and gene conversion in the pneumococcus.
    Wolter N; Smith AM; Farrell DJ; Klugman KP
    Antimicrob Agents Chemother; 2006 Jan; 50(1):359-61. PubMed ID: 16377711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modes and modulations of antibiotic resistance gene expression.
    Depardieu F; Podglajen I; Leclercq R; Collatz E; Courvalin P
    Clin Microbiol Rev; 2007 Jan; 20(1):79-114. PubMed ID: 17223624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redefining the Small Regulatory RNA Transcriptome in Streptococcus pneumoniae Serotype 2 Strain D39.
    Sinha D; Zimmer K; Cameron TA; Rusch DB; Winkler ME; De Lay NR
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30833353
    [No Abstract]   [Full Text] [Related]  

  • 12.
    Dao TH; Echlin H; McKnight A; Marr ES; Junker J; Jia Q; Hayden R; van Opijnen T; Isberg RR; Cooper VS; Rosch JW
    mBio; 2024 Feb; 15(2):e0282823. PubMed ID: 38193698
    [No Abstract]   [Full Text] [Related]  

  • 13. Transcriptional Repressor PtvR Regulates Phenotypic Tolerance to Vancomycin in Streptococcus pneumoniae.
    Liu X; Li JW; Feng Z; Luo Y; Veening JW; Zhang JR
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genes Contributing to the Unique Biology and Intrinsic Antibiotic Resistance of Enterococcus faecalis.
    Gilmore MS; Salamzade R; Selleck E; Bryan N; Mello SS; Manson AL; Earl AM
    mBio; 2020 Nov; 11(6):. PubMed ID: 33234689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictable properties of fitness landscapes induced by adaptational tradeoffs.
    Das SG; Direito SO; Waclaw B; Allen RJ; Krug J
    Elife; 2020 May; 9():. PubMed ID: 32423531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibiotic resistance begets more resistance: chromosomal resistance mutations mitigate fitness costs conferred by multi-resistant clinical plasmids.
    Nair RR; Andersson DI; Warsi OM
    Microbiol Spectr; 2024 May; 12(5):e0420623. PubMed ID: 38534122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Based Prediction of Bacterial Antibiotic Resistance.
    Su M; Satola SW; Read TD
    J Clin Microbiol; 2019 Mar; 57(3):. PubMed ID: 30381421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonoptimal Gene Expression Creates Latent Potential for Antibiotic Resistance.
    Palmer AC; Chait R; Kishony R
    Mol Biol Evol; 2018 Nov; 35(11):2669-2684. PubMed ID: 30169679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression analysis in the potent bactericidal activity of sitafloxacin against Streptococcus pneumoniae.
    Kobayashi I; Kanesaka I; Kanayama Katsuse A; Takahashi H; Okumura R; Nakanishi Y; Kaneko A
    J Infect Chemother; 2019 Apr; 25(4):322-324. PubMed ID: 30366862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of two-component regulatory systems in antibiotic resistance.
    Tierney AR; Rather PN
    Future Microbiol; 2019 Apr; 14(6):533-552. PubMed ID: 31066586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.