BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32868778)

  • 1. Molecular layer interneurons in the cerebellum encode for valence in associative learning.
    Ma M; Futia GL; de Souza FMS; Ozbay BN; Llano I; Gibson EA; Restrepo D
    Nat Commun; 2020 Aug; 11(1):4217. PubMed ID: 32868778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons.
    Gaffield MA; Christie JM
    J Neurosci; 2017 May; 37(18):4751-4765. PubMed ID: 28389475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerted Interneuron Activity in the Cerebellar Molecular Layer During Rhythmic Oromotor Behaviors.
    Astorga G; Li D; Therreau L; Kassa M; Marty A; Llano I
    J Neurosci; 2017 Nov; 37(47):11455-11468. PubMed ID: 29066561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of a Form of Cerebellar Motor Memory Requires Learned Alterations to the Activity of Inhibitory Molecular Layer Interneurons.
    Bonnan A; Zhang K; Gaffield MA; Christie JM
    J Neurosci; 2023 Jan; 43(4):601-612. PubMed ID: 36639897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar granule cells encode the expectation of reward.
    Wagner MJ; Kim TH; Savall J; Schnitzer MJ; Luo L
    Nature; 2017 Apr; 544(7648):96-100. PubMed ID: 28321129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graded Control of Climbing-Fiber-Mediated Plasticity and Learning by Inhibition in the Cerebellum.
    Rowan MJM; Bonnan A; Zhang K; Amat SB; Kikuchi C; Taniguchi H; Augustine GJ; Christie JM
    Neuron; 2018 Sep; 99(5):999-1015.e6. PubMed ID: 30122378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interneuronal NMDA receptors regulate long-term depression and motor learning in the cerebellum.
    Kono M; Kakegawa W; Yoshida K; Yuzaki M
    J Physiol; 2019 Feb; 597(3):903-920. PubMed ID: 30382582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of molecular layer interneurons in sensory information processing in mouse cerebellar cortex Crus II in vivo.
    Chu CP; Bing YH; Liu H; Qiu DL
    PLoS One; 2012; 7(5):e37031. PubMed ID: 22623975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback inhibition underlies new computational functions of cerebellar interneurons.
    Halverson HE; Kim J; Khilkevich A; Mauk MD; Augustine GJ
    Elife; 2022 Dec; 11():. PubMed ID: 36480240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol enhances both action potential-dependent and action potential-independent GABAergic transmission onto cerebellar Purkinje cells.
    Hirono M; Yamada M; Obata K
    Neuropharmacology; 2009 Aug; 57(2):109-20. PubMed ID: 19426745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spillover-mediated feedforward inhibition functionally segregates interneuron activity.
    Coddington LT; Rudolph S; Vande Lune P; Overstreet-Wadiche L; Wadiche JI
    Neuron; 2013 Jun; 78(6):1050-62. PubMed ID: 23707614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendritic Inhibition by Shh Signaling-Dependent Stellate Cell Pool Is Critical for Motor Learning.
    Li W; Chen L; Fleming JT; Brignola E; Zavalin K; Lagrange A; Rex T; Heiney SA; Wojaczynski GJ; Medina JF; Chiang C
    J Neurosci; 2022 Jun; 42(26):5130-5143. PubMed ID: 35589396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compromised Survival of Cerebellar Molecular Layer Interneurons Lacking GDNF Receptors GFRα1 or RET Impairs Normal Cerebellar Motor Learning.
    Sergaki MC; López-Ramos JC; Stagkourakis S; Gruart A; Broberger C; Delgado-García JM; Ibáñez CF
    Cell Rep; 2017 Jun; 19(10):1977-1986. PubMed ID: 28591570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-methyl-d-aspartate inhibits cerebellar Purkinje cell activity via the excitation of molecular layer interneurons under in vivo conditions in mice.
    Liu H; Zhao SN; Zhao GY; Sun L; Chu CP; Qiu DL
    Brain Res; 2014 Apr; 1560():1-9. PubMed ID: 24642274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampal-prefrontal theta coupling develops as mice become proficient in associative odorant discrimination learning.
    Ramirez-Gordillo D; Bayer KU; Restrepo D
    eNeuro; 2022 Sep; 9(5):. PubMed ID: 36127136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellar potentiation and learning a whisker-based object localization task with a time response window.
    Rahmati N; Owens CB; Bosman LW; Spanke JK; Lindeman S; Gong W; Potters JW; Romano V; Voges K; Moscato L; Koekkoek SK; Negrello M; De Zeeuw CI
    J Neurosci; 2014 Jan; 34(5):1949-62. PubMed ID: 24478374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatic calcium level reports integrated spiking activity of cerebellar interneurons in vitro and in vivo.
    Franconville R; Revet G; Astorga G; Schwaller B; Llano I
    J Neurophysiol; 2011 Oct; 106(4):1793-805. PubMed ID: 21734102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation and Inhibition Delays within a Feedforward Inhibitory Pathway Modulate Cerebellar Purkinje Cell Output in Mice.
    Binda F; Spaeth L; Kumar A; Isope P
    J Neurosci; 2023 Aug; 43(33):5905-5917. PubMed ID: 37495382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning improves decoding of odor identity with phase-referenced oscillations in the olfactory bulb.
    Losacco J; Ramirez-Gordillo D; Gilmer J; Restrepo D
    Elife; 2020 Jan; 9():. PubMed ID: 31990271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse.
    Galliano E; Baratella M; Sgritta M; Ruigrok TJ; Haasdijk ED; Hoebeek FE; D'Angelo E; Jaarsma D; De Zeeuw CI
    Front Neural Circuits; 2013; 7():59. PubMed ID: 23580075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.