BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32868926)

  • 1. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9.
    Fromm SA; Lawrence RE; Hurley JH
    Nat Struct Mol Biol; 2020 Nov; 27(11):1017-1023. PubMed ID: 32868926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex.
    Lawrence RE; Fromm SA; Fu Y; Yokom AL; Kim DJ; Thelen AM; Young LN; Lim CY; Samelson AJ; Hurley JH; Zoncu R
    Science; 2019 Nov; 366(6468):971-977. PubMed ID: 31672913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms.
    Shen K; Sabatini DM
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9545-9550. PubMed ID: 30181260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex.
    Shen K; Rogala KB; Chou HT; Huang RK; Yu Z; Sabatini DM
    Cell; 2019 Nov; 179(6):1319-1329.e8. PubMed ID: 31704029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9.
    Jung J; Genau HM; Behrends C
    Mol Cell Biol; 2015 Jul; 35(14):2479-94. PubMed ID: 25963655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.
    Wang S; Tsun ZY; Wolfson RL; Shen K; Wyant GA; Plovanich ME; Yuan ED; Jones TD; Chantranupong L; Comb W; Wang T; Bar-Peled L; Zoncu R; Straub C; Kim C; Park J; Sabatini BL; Sabatini DM
    Science; 2015 Jan; 347(6218):188-94. PubMed ID: 25567906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases.
    Shen K; Valenstein ML; Gu X; Sabatini DM
    J Biol Chem; 2019 Feb; 294(8):2970-2975. PubMed ID: 30651352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.
    Shen K; Huang RK; Brignole EJ; Condon KJ; Valenstein ML; Chantranupong L; Bomaliyamu A; Choe A; Hong C; Yu Z; Sabatini DM
    Nature; 2018 Apr; 556(7699):64-69. PubMed ID: 29590090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation.
    Jansen RM; Peruzzo R; Fromm SA; Yokom AL; Zoncu R; Hurley JH
    Sci Adv; 2022 Sep; 8(37):eadd2926. PubMed ID: 36103527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1.
    Rebsamen M; Pochini L; Stasyk T; de Araújo ME; Galluccio M; Kandasamy RK; Snijder B; Fauster A; Rudashevskaya EL; Bruckner M; Scorzoni S; Filipek PA; Huber KV; Bigenzahn JW; Heinz LX; Kraft C; Bennett KL; Indiveri C; Huber LA; Superti-Furga G
    Nature; 2015 Mar; 519(7544):477-81. PubMed ID: 25561175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architecture of human Rag GTPase heterodimers and their complex with mTORC1.
    Anandapadamanaban M; Masson GR; Perisic O; Berndt A; Kaufman J; Johnson CM; Santhanam B; Rogala KB; Sabatini DM; Williams RL
    Science; 2019 Oct; 366(6462):203-210. PubMed ID: 31601764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interdomain hydrogen bond in the Rag GTPases maintains stable mTORC1 signaling in sensing amino acids.
    Egri SB; Shen K
    J Biol Chem; 2021 Jul; 297(1):100861. PubMed ID: 34116056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the lysosomal mTORC1-TFEB-Rag-Ragulator megacomplex.
    Cui Z; Napolitano G; de Araujo MEG; Esposito A; Monfregola J; Huber LA; Ballabio A; Hurley JH
    Nature; 2023 Feb; 614(7948):572-579. PubMed ID: 36697823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GATOR1-dependent recruitment of FLCN-FNIP to lysosomes coordinates Rag GTPase heterodimer nucleotide status in response to amino acids.
    Meng J; Ferguson SM
    J Cell Biol; 2018 Aug; 217(8):2765-2776. PubMed ID: 29848618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability.
    Shen K; Choe A; Sabatini DM
    Mol Cell; 2017 Nov; 68(3):552-565.e8. PubMed ID: 29056322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism.
    Egri SB; Ouch C; Chou HT; Yu Z; Song K; Xu C; Shen K
    Mol Cell; 2022 May; 82(10):1836-1849.e5. PubMed ID: 35338845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.
    Tsun ZY; Bar-Peled L; Chantranupong L; Zoncu R; Wang T; Kim C; Spooner E; Sabatini DM
    Mol Cell; 2013 Nov; 52(4):495-505. PubMed ID: 24095279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffold.
    Lawrence RE; Cho KF; Rappold R; Thrun A; Tofaute M; Kim DJ; Moldavski O; Hurley JH; Zoncu R
    Nat Cell Biol; 2018 Sep; 20(9):1052-1063. PubMed ID: 30061680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex.
    Su MY; Morris KL; Kim DJ; Fu Y; Lawrence R; Stjepanovic G; Zoncu R; Hurley JH
    Mol Cell; 2017 Dec; 68(5):835-846.e3. PubMed ID: 29107538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the docking of mTORC1 on the lysosomal surface.
    Rogala KB; Gu X; Kedir JF; Abu-Remaileh M; Bianchi LF; Bottino AMS; Dueholm R; Niehaus A; Overwijn D; Fils AP; Zhou SX; Leary D; Laqtom NN; Brignole EJ; Sabatini DM
    Science; 2019 Oct; 366(6464):468-475. PubMed ID: 31601708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.