These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 32869422)
1. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. Zheng M; Zhou Z; Zhao P; Luo Y; Ye Q; Zhang K; Song L; Mo J Glob Chang Biol; 2020 Nov; 26(11):6203-6217. PubMed ID: 32869422 [TBL] [Abstract][Full Text] [Related]
2. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Zheng M; Zhou Z; Luo Y; Zhao P; Mo J Glob Chang Biol; 2019 Sep; 25(9):3018-3030. PubMed ID: 31120621 [TBL] [Abstract][Full Text] [Related]
3. Meta-analysis shows non-uniform responses of above- and belowground productivity to drought. Wang C; Sun Y; Chen HYH; Yang J; Ruan H Sci Total Environ; 2021 Aug; 782():146901. PubMed ID: 33848873 [TBL] [Abstract][Full Text] [Related]
4. N and P constrain C in ecosystems under climate change: Role of nutrient redistribution, accumulation, and stoichiometry. Rastetter EB; Kwiatkowski BL; Kicklighter DW; Barker Plotkin A; Genet H; Nippert JB; O'Keefe K; Perakis SS; Porder S; Roley SS; Ruess RW; Thompson JR; Wieder WR; Wilcox K; Yanai RD Ecol Appl; 2022 Dec; 32(8):e2684. PubMed ID: 35633204 [TBL] [Abstract][Full Text] [Related]
5. Multiple constraints cause positive and negative feedbacks limiting grassland soil CO Fay PA; Hui D; Jackson RB; Collins HP; Reichmann LG; Aspinwall MJ; Jin VL; Khasanova AR; Heckman RW; Polley HW Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33419921 [TBL] [Abstract][Full Text] [Related]
6. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. Dijkstra FA; Pendall E; Morgan JA; Blumenthal DM; Carrillo Y; LeCain DR; Follett RF; Williams DG New Phytol; 2012 Nov; 196(3):807-815. PubMed ID: 23005343 [TBL] [Abstract][Full Text] [Related]
7. Modeled responses of terrestrial ecosystems to elevated atmospheric CO Pan Y; Melillo JM; McGuire AD; Kicklighter DW; Pitelka LF; Hibbard K; Pierce LL; Running SW; Ojima DS; Parton WJ; Schimel DS; Oecologia; 1998 Apr; 114(3):389-404. PubMed ID: 28307783 [TBL] [Abstract][Full Text] [Related]
8. Interactive effects of plant species diversity and elevated CO2 on soil biota and nutrient cycling. Niklaus PA; Alphei J; Kampichler C; Kandeler E; Körner C; Tscherko D; Wohlfender M Ecology; 2007 Dec; 88(12):3153-63. PubMed ID: 18229849 [TBL] [Abstract][Full Text] [Related]
9. Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis. Yue K; Fornara DA; Yang W; Peng Y; Li Z; Wu F; Peng C Glob Chang Biol; 2017 Jun; 23(6):2450-2463. PubMed ID: 27859966 [TBL] [Abstract][Full Text] [Related]
10. Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO Maxwell TL; Canarini A; Bogdanovic I; Böckle T; Martin V; Noll L; Prommer J; Séneca J; Simon E; Piepho HP; Herndl M; Pötsch EM; Kaiser C; Richter A; Bahn M; Wanek W Glob Chang Biol; 2022 Apr; 28(7):2425-2441. PubMed ID: 34908205 [TBL] [Abstract][Full Text] [Related]
11. Soil Carbon, Nitrogen, and Phosphorus Cycling Microbial Populations and Their Resistance to Global Change Depend on Soil C:N:P Stoichiometry. Luo G; Xue C; Jiang Q; Xiao Y; Zhang F; Guo S; Shen Q; Ling N mSystems; 2020 Jun; 5(3):. PubMed ID: 32606023 [TBL] [Abstract][Full Text] [Related]
12. Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland. Hungate BA; Day FP; Dijkstra P; Duval BD; Hinkle CR; Langley JA; Megonigal JP; Stiling P; Johnson DW; Drake BG New Phytol; 2013 Nov; 200(3):767-777. PubMed ID: 23869799 [TBL] [Abstract][Full Text] [Related]
13. Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools: A meta-analysis. Yue K; Yang W; Peng Y; Peng C; Tan B; Xu Z; Zhang L; Ni X; Zhou W; Wu F Sci Total Environ; 2018 Jul; 630():181-188. PubMed ID: 29477116 [TBL] [Abstract][Full Text] [Related]
14. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Houlton BZ; Wang YP; Vitousek PM; Field CB Nature; 2008 Jul; 454(7202):327-30. PubMed ID: 18563086 [TBL] [Abstract][Full Text] [Related]
15. Negative responses of terrestrial nitrogen fixation to nitrogen addition weaken across increased soil organic carbon levels. Zheng M; Xu M; Li D; Deng Q; Mo J Sci Total Environ; 2023 Jun; 877():162965. PubMed ID: 36948308 [TBL] [Abstract][Full Text] [Related]
16. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Rustad L; Campbell J; Marion G; Norby R; Mitchell M; Hartley A; Cornelissen J; Gurevitch J; Oecologia; 2001 Feb; 126(4):543-562. PubMed ID: 28547240 [TBL] [Abstract][Full Text] [Related]
17. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Chen J; van Groenigen KJ; Hungate BA; Terrer C; van Groenigen JW; Maestre FT; Ying SC; Luo Y; Jørgensen U; Sinsabaugh RL; Olesen JE; Elsgaard L Glob Chang Biol; 2020 Sep; 26(9):5077-5086. PubMed ID: 32529708 [TBL] [Abstract][Full Text] [Related]
18. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Caldwell MM; Bornman JF; Ballaré CL; Flint SD; Kulandaivelu G Photochem Photobiol Sci; 2007 Mar; 6(3):252-66. PubMed ID: 17344961 [TBL] [Abstract][Full Text] [Related]
19. Drought sensitivity of an N Minucci JM; Miniat CF; Wurzburger N Ecology; 2019 Dec; 100(12):e02862. PubMed ID: 31386760 [TBL] [Abstract][Full Text] [Related]
20. Vital roles of soil microbes in driving terrestrial nitrogen immobilization. Li Z; Zeng Z; Song Z; Wang F; Tian D; Mi W; Huang X; Wang J; Song L; Yang Z; Wang J; Feng H; Jiang L; Chen Y; Luo Y; Niu S Glob Chang Biol; 2021 May; 27(9):1848-1858. PubMed ID: 33560594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]