These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32869821)

  • 21. Evaluation of tris-acryl gelatin microsphere embolization with monochromatic X Rays: comparison with polyvinyl alcohol particles.
    Yamamoto A; Imai S; Kobatake M; Yamashita T; Tamada T; Umetani K
    J Vasc Interv Radiol; 2006 Nov; 17(11 Pt 1):1797-802. PubMed ID: 17142710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution and Detection of Radiopaque Beads after Hepatic Transarterial Embolization in Swine: Cone-Beam CT versus MicroCT.
    Thompson JG; van der Sterren W; Bakhutashvili I; van der Bom IM; Radaelli AG; Karanian JW; Esparza-Trujillo J; Woods DL; Lewis AL; Wood BJ; Pritchard WF
    J Vasc Interv Radiol; 2018 Apr; 29(4):568-574. PubMed ID: 29500000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent.
    Chen G; Wei R; Huang X; Wang F; Chen Z
    Int J Biol Macromol; 2020 Jul; 155():1450-1459. PubMed ID: 31734365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of inherently radiopaque BaSO
    Du Q; Li L; Liu Y; Zeng J; Li J; Zheng C; Zhou G; Yang X
    J Mater Chem B; 2018 Jun; 6(21):3522-3530. PubMed ID: 32254447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimodal visibility of a modified polyzene-F-coated spherical embolic agent for liver embolization: feasibility study in a porcine model.
    Stampfl U; Sommer CM; Bellemann N; Holzschuh M; Kueller A; Bluemmel J; Gehrig T; Shevchenko M; Kenngott H; Kauczor HU; Radeleff B
    J Vasc Interv Radiol; 2012 Sep; 23(9):1225-31.e2. PubMed ID: 22832143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of holmium loaded alginate microspheres for multimodality imaging and therapeutic applications.
    Zielhuis SW; Seppenwoolde JH; Bakker CJ; Jahnz U; Zonnenberg BA; van het Schip AD; Hennink WE; Nijsen JF
    J Biomed Mater Res A; 2007 Sep; 82(4):892-8. PubMed ID: 17335019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic alginate microspheres detected by MRI fabricated using microfluidic technique and release behavior of encapsulated dual drugs.
    Wang Q; Liu S; Yang F; Gan L; Yang X; Yang Y
    Int J Nanomedicine; 2017; 12():4335-4347. PubMed ID: 28652736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Injectable and Radiopaque Liquid Metal/Calcium Alginate Hydrogels for Endovascular Embolization and Tumor Embolotherapy.
    Fan L; Duan M; Xie Z; Pan K; Wang X; Sun X; Wang Q; Rao W; Liu J
    Small; 2020 Jan; 16(2):e1903421. PubMed ID: 31762193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computed tomography and histopathological findings after embolization with inherently radiopaque 40μm-microspheres, standard 40μm-microspheres and iodized oil in a porcine liver model.
    Vollherbst DF; Gockner T; Do T; Holzer K; Mogler C; Flechsig P; Harms A; Schlett CL; Pereira PL; Richter GM; Kauczor HU; Sommer CM
    PLoS One; 2018; 13(7):e0198911. PubMed ID: 29985928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.
    Wang H; Qin XY; Li ZY; Guo LY; Zheng ZZ; Liu LS; Fan TY
    Int J Pharm; 2016 Sep; 511(2):831-9. PubMed ID: 27426106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alginate Microspheres Containing Temperature Sensitive Liposomes (TSL) for MR-Guided Embolization and Triggered Release of Doxorubicin.
    van Elk M; Ozbakir B; Barten-Rijbroek AD; Storm G; Nijsen F; Hennink WE; Vermonden T; Deckers R
    PLoS One; 2015; 10(11):e0141626. PubMed ID: 26561370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chitosan-coated alginate microspheres for embolization and/or chemoembolization: in vivo studies.
    Eroğlu M; Kurşaklioğlu H; Misirli Y; Iyisoy A; Acar A; Işin Doğan A; Denkbaş EB
    J Microencapsul; 2006 Jun; 23(4):367-76. PubMed ID: 16854813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Handling and performance characteristics of a new small caliber radiopaque embolic microsphere.
    Lewis AL; Caine M; Garcia P; Ashrafi K; Tang Y; Hinchcliffe L; Guo W; Bascal Z; Kilpatrick H; Willis SL
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2878-2888. PubMed ID: 32578348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Balancing Safety and Efficacy to Determine the Most Suitable Size of Imaging-Visible Embolic Microspheres for Bariatric Arterial Embolization in a Preclinical Model.
    Fu Y; Abiola G; Tunacao J; Vairavamurthy JP; Nwoke F; Dreher M; Shin EJ; Anders RA; Kraitchman DL; Weiss CR
    J Vasc Interv Radiol; 2023 Dec; 34(12):2224-2232.e3. PubMed ID: 37684003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantification and reduction of reflux during embolotherapy using an antireflux catheter and tantalum microspheres: ex vivo analysis.
    Arepally A; Chomas J; Kraitchman D; Hong K
    J Vasc Interv Radiol; 2013 Apr; 24(4):575-80. PubMed ID: 23462064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly(acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization and MRI detectability: In vitro and in vivo evaluation.
    Li ZY; Qin XY; Guo LY; Wang H; Liu XX; Zheng ZZ; Guan HT; Song L; Zou YH; Fan TY
    Int J Pharm; 2017 Jul; 527(1-2):31-41. PubMed ID: 28487188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alginate-calcium microsphere loaded with thrombin: a new composite biomaterial for hemostatic embolization.
    Rong JJ; Liang M; Xuan FQ; Sun JY; Zhao LJ; Zhen HZ; Tian XX; Liu D; Zhang QY; Peng CF; Yao TM; Li F; Wang XZ; Han YL; Yu WT
    Int J Biol Macromol; 2015 Apr; 75():479-88. PubMed ID: 25583022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The sodium hyaluronate microspheres fabricated by solution drying for transcatheter arterial embolization.
    Yi Z; Sun Z; Shen Y; Luo D; Zhang R; Ma S; Zhao R; Farheen J; Iqbal MZ; Kong X
    J Mater Chem B; 2022 Jun; 10(21):4105-4114. PubMed ID: 35531617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shape-Anisotropic Microembolics Generated by Microfluidic Synthesis for Transarterial Embolization Treatment.
    Luo Y; Ma Y; Chen Z; Gao Y; Zhou Y; Liu X; Liu X; Gao X; Li Z; Liu C; Leo HL; Yu H; Guo Q
    Adv Healthc Mater; 2022 May; 11(10):e2102281. PubMed ID: 35106963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bariatric Arterial Embolization: Effect of Microsphere Size on the Suppression of Fundal Ghrelin Expression and Weight Change in a Swine Model.
    Fu Y; Weiss CR; Paudel K; Shin EJ; Kedziorek D; Arepally A; Anders RA; Kraitchman DL
    Radiology; 2018 Oct; 289(1):83-89. PubMed ID: 29989526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.