These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 32869975)
21. Non-Noble Metal Nanoparticles Supported by Postmodified Porous Organic Semiconductors: Highly Efficient Catalysts for Visible-Light-Driven On-Demand H Zhang H; Gu X; Song J; Fan N; Su H ACS Appl Mater Interfaces; 2017 Sep; 9(38):32767-32774. PubMed ID: 28881130 [TBL] [Abstract][Full Text] [Related]
22. Carbon nitride supported Ni Shang Y; Feng K; Wang Y; Sun X; Zhong J RSC Adv; 2019 Apr; 9(20):11552-11557. PubMed ID: 35520242 [TBL] [Abstract][Full Text] [Related]
23. Facile construction of robust Ru-Co Jiang J; Wei W; Ren Z; Luo Y; Wang X; Xu Y; Chang M; Ai L J Colloid Interface Sci; 2023 Sep; 646():25-33. PubMed ID: 37182256 [TBL] [Abstract][Full Text] [Related]
24. Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance. Kaya M; Zahmakiran M; Ozkar S; Volkan M ACS Appl Mater Interfaces; 2012 Aug; 4(8):3866-73. PubMed ID: 22856878 [TBL] [Abstract][Full Text] [Related]
25. Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructured Cu@CuCoO Li J; Ren X; Lv H; Wang Y; Li Y; Liu B J Hazard Mater; 2020 Jun; 391():122199. PubMed ID: 32045803 [TBL] [Abstract][Full Text] [Related]
26. MoO₃-Doped MnCo₂O₄ Microspheres Consisting of Nanosheets: An Inexpensive Nanostructured Catalyst to Hydrolyze Ammonia Borane for Hydrogen Generation. Lu D; Feng Y; Ding Z; Liao J; Zhang X; Liu HR; Li H Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30586914 [TBL] [Abstract][Full Text] [Related]
27. Boosted Reactivity of Ammonia Borane Dehydrogenation over Ni/Ni Lin Y; Yang L; Jiang H; Zhang Y; Cao D; Wu C; Zhang G; Jiang J; Song L J Phys Chem Lett; 2019 Mar; 10(5):1048-1054. PubMed ID: 30777440 [TBL] [Abstract][Full Text] [Related]
28. Towards the design of novel boron- and nitrogen-substituted ammonia-borane and bifunctional arene ruthenium catalysts for hydrogen storage. Bandaru S; English NJ; Phillips AD; MacElroy JM J Comput Chem; 2014 May; 35(12):891-903. PubMed ID: 24497325 [TBL] [Abstract][Full Text] [Related]
29. Highly Active Ni- and Co-Based Bimetallic Catalysts for Hydrogen Production From Ammonia-Borane. Furukawa S; Nishimura G; Takayama T; Komatsu T Front Chem; 2019; 7():138. PubMed ID: 30949471 [TBL] [Abstract][Full Text] [Related]
30. Two-dimensional molybdenum boride coordinating with ruthenium nanoparticles to boost hydrogen generation from hydrolytic dehydrogenation of ammonia borane. Zhang C; Zuo W; Ai L; Tu S; Jiang J J Colloid Interface Sci; 2024 Sep; 669():794-803. PubMed ID: 38744157 [TBL] [Abstract][Full Text] [Related]
31. Three-Shell Cu@Co@Ni Nanoparticles Stabilized with a Metal-Organic Framework for Enhanced Tandem Catalysis. Sun JL; Chen YZ; Ge BD; Li JH; Wang GM ACS Appl Mater Interfaces; 2019 Jan; 11(1):940-947. PubMed ID: 30556388 [TBL] [Abstract][Full Text] [Related]
32. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane. Tonbul Y; Akbayrak S; Özkar S J Colloid Interface Sci; 2019 Oct; 553():581-587. PubMed ID: 31238228 [TBL] [Abstract][Full Text] [Related]
33. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane. Akbayrak S; Tonbul Y; Özkar S Turk J Chem; 2023; 47(5):1224-1238. PubMed ID: 38173757 [TBL] [Abstract][Full Text] [Related]
34. Ruthenium-Catalyzed Ammonia Borane Dehydrogenation: Mechanism and Utility. Zhang X; Kam L; Trerise R; Williams TJ Acc Chem Res; 2017 Jan; 50(1):86-95. PubMed ID: 28032510 [TBL] [Abstract][Full Text] [Related]
35. Metal-Support Synergistic Catalysis in Pt/MoO Zhou S; Yang Y; Yin P; Ren Z; Wang L; Wei M ACS Appl Mater Interfaces; 2022 Feb; 14(4):5275-5286. PubMed ID: 35050564 [TBL] [Abstract][Full Text] [Related]
36. Ni Feng Y; Zhang J; Ye H; Li L; Wang H; Li X; Zhang X; Li H Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31540373 [TBL] [Abstract][Full Text] [Related]
37. Rhodium nanoparticles confined in titania nanotubes for efficient Hydrogen evolution from Ammonia Borane. Xu H; Yu W; Zhang J; Zhou Z; Zhang H; Ge H; Wang G; Qin Y J Colloid Interface Sci; 2022 Mar; 609():755-763. PubMed ID: 34823851 [TBL] [Abstract][Full Text] [Related]
38. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. Yang L; Luo W; Cheng G ACS Appl Mater Interfaces; 2013 Aug; 5(16):8231-40. PubMed ID: 23927435 [TBL] [Abstract][Full Text] [Related]
39. Highly Selective and Sharp Volcano-type Synergistic Ni Fu F; Wang C; Wang Q; Martinez-Villacorta AM; Escobar A; Chong H; Wang X; Moya S; Salmon L; Fouquet E; Ruiz J; Astruc D J Am Chem Soc; 2018 Aug; 140(31):10034-10042. PubMed ID: 29996053 [TBL] [Abstract][Full Text] [Related]
40. Hydrogen Generation upon Nanocatalyzed Hydrolysis of Hydrogen-Rich Boron Derivatives: Recent Developments. Wang C; Wang Q; Fu F; Astruc D Acc Chem Res; 2020 Oct; 53(10):2483-2493. PubMed ID: 33034454 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]