These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32870583)

  • 1. Central encoding of the strength of intranasal chemosensory trigeminal stimuli in a human experimental pain setting.
    Lötsch J; Oertel BG; Felden L; Nöth U; Deichmann R; Hummel T; Walter C
    Hum Brain Mapp; 2020 Dec; 41(18):5240-5254. PubMed ID: 32870583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human operculo-insular cortex is pain-preferentially but not pain-exclusively activated by trigeminal and olfactory stimuli.
    Lötsch J; Walter C; Felden L; Nöth U; Deichmann R; Oertel BG
    PLoS One; 2012; 7(4):e34798. PubMed ID: 22496865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral activation to intranasal chemosensory trigeminal stimulation.
    Boyle JA; Heinke M; Gerber J; Frasnelli J; Hummel T
    Chem Senses; 2007 May; 32(4):343-53. PubMed ID: 17308328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PET-based investigation of cerebral activation following intranasal trigeminal stimulation.
    Hummel T; Oehme L; van den Hoff J; Gerber J; Heinke M; Boyle JA; Beuthien-Baumann B
    Hum Brain Mapp; 2009 Apr; 30(4):1100-4. PubMed ID: 18412096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trigeminal activation using chemical, electrical, and mechanical stimuli.
    Iannilli E; Del Gratta C; Gerber JC; Romani GL; Hummel T
    Pain; 2008 Oct; 139(2):376-388. PubMed ID: 18583050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of continuous theta-burst stimulation of the primary motor and secondary somatosensory areas on the central processing and the perception of trigeminal nociceptive input in healthy volunteers.
    Annak O; Heidegger T; Walter C; Deichmann R; Nöth U; Hansen-Goos O; Ziemann U; Lötsch J
    Pain; 2019 Jan; 160(1):172-186. PubMed ID: 30204647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neuronal correlates of intranasal trigeminal function-an ALE meta-analysis of human functional brain imaging data.
    Albrecht J; Kopietz R; Frasnelli J; Wiesmann M; Hummel T; Lundström JN
    Brain Res Rev; 2010 Mar; 62(2):183-96. PubMed ID: 19913573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T.
    Schulte LH; Sprenger C; May A
    Neuroimage; 2016 Jan; 124(Pt A):518-525. PubMed ID: 26388554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of rat medullary dorsal horn neurons following intranasal noxious chemical stimulation: effects of stimulus intensity, duration, and interstimulus interval.
    Peppel P; Anton F
    J Neurophysiol; 1993 Dec; 70(6):2260-75. PubMed ID: 8120581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural coding of stimulus concentration in the human olfactory and intranasal trigeminal systems.
    Bensafi M; Iannilli E; Gerber J; Hummel T
    Neuroscience; 2008 Jun; 154(2):832-8. PubMed ID: 18485604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity and connectivity of the cerebellum in trigeminal nociception.
    Mehnert J; Schulte L; Timmann D; May A
    Neuroimage; 2017 Apr; 150():112-118. PubMed ID: 28192274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intranasal trigeminal function in subjects with and without an intact sense of smell.
    Iannilli E; Gerber J; Frasnelli J; Hummel T
    Brain Res; 2007 Mar; 1139():235-44. PubMed ID: 17274965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responsiveness of human nasal mucosa to trigeminal stimuli depends on the site of stimulation.
    Frasnelli J; Heilmann S; Hummel T
    Neurosci Lett; 2004 May; 362(1):65-9. PubMed ID: 15147782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The primary somatosensory cortex and the insula contribute differently to the processing of transient and sustained nociceptive and non-nociceptive somatosensory inputs.
    Hu L; Zhang L; Chen R; Yu H; Li H; Mouraux A
    Hum Brain Mapp; 2015 Nov; 36(11):4346-4360. PubMed ID: 26252509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early gamma-oscillations as correlate of localized nociceptive processing in primary sensorimotor cortex.
    Heid C; Mouraux A; Treede RD; Schuh-Hofer S; Rupp A; Baumgärtner U
    J Neurophysiol; 2020 May; 123(5):1711-1726. PubMed ID: 32208893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemosensory event-related potentials to trigeminal stimuli change in relation to the interval between repetitive stimulation of the nasal mucosa.
    Hummel T; Kobal G
    Eur Arch Otorhinolaryngol; 1999; 256(1):16-21. PubMed ID: 10065380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of the negative mucosal potential to the trigeminal target stimulus CO(2).
    Thürauf N; Günther M; Pauli E; Kobal G
    Brain Res; 2002 Jun; 942(1-2):79-86. PubMed ID: 12031855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateralisation of intranasal trigeminal chemosensory event-related potentials.
    Rombaux P; Guérit JM; Mouraux A
    Neurophysiol Clin; 2008 Feb; 38(1):23-30. PubMed ID: 18329547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of gustatory and lingual somatosensory perceptions at the cortical level in the human: a functional magnetic resonance imaging study.
    Cerf-Ducastel B; Van de Moortele PF; MacLeod P; Le Bihan D; Faurion A
    Chem Senses; 2001 May; 26(4):371-83. PubMed ID: 11369672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracing toothache intensity in the brain.
    Brügger M; Lutz K; Brönnimann B; Meier ML; Luechinger R; Barlow A; Jäncke L; Ettlin DA
    J Dent Res; 2012 Feb; 91(2):156-60. PubMed ID: 22157099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.