These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32870660)

  • 1. Reaction Rate Governs the Viscoelasticity and Nanostructure of Folded Protein Hydrogels.
    Aufderhorst-Roberts A; Hughes MDG; Hare A; Head DA; Kapur N; Brockwell DJ; Dougan L
    Biomacromolecules; 2020 Oct; 21(10):4253-4260. PubMed ID: 32870660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of viscoelastic properties of an engineered muscle-inspired protein hydrogel.
    Aufderhorst-Roberts A; Cussons S; Brockwell DJ; Dougan L
    Soft Matter; 2023 May; 19(17):3167-3178. PubMed ID: 37067782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelation kinetics and viscoelastic properties of pluronic and α-cyclodextrin-based pseudopolyrotaxane hydrogels.
    Pradal C; Jack KS; Grøndahl L; Cooper-White JJ
    Biomacromolecules; 2013 Oct; 14(10):3780-92. PubMed ID: 24001031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the Potential of Folded Globular Polyproteins As Hydrogel Building Blocks.
    da Silva MA; Lenton S; Hughes M; Brockwell DJ; Dougan L
    Biomacromolecules; 2017 Feb; 18(2):636-646. PubMed ID: 28006103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural effects of crosslinking a biopolymer hydrogel derived from marine mussel adhesive protein.
    Loizou E; Weisser JT; Dundigalla A; Porcar L; Schmidt G; Wilker JJ
    Macromol Biosci; 2006 Sep; 6(9):711-8. PubMed ID: 16967473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portable Quartz Crystal Resonator Sensor for Characterising the Gelation Kinetics and Viscoelastic Properties of Hydrogels.
    Miranda-Martínez A; Yan H; Silveira V; Serrano-Olmedo JJ; Crouzier T
    Gels; 2022 Nov; 8(11):. PubMed ID: 36354626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscale characterization of supramolecular transient networks using SAXS and rheology.
    Pape AC; Bastings MM; Kieltyka RE; Wyss HM; Voets IK; Meijer EW; Dankers PY
    Int J Mol Sci; 2014 Jan; 15(1):1096-111. PubMed ID: 24441567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of Nanoscale
    Hughes MDG; Hanson BS; Cussons S; Mahmoudi N; Brockwell DJ; Dougan L
    ACS Nano; 2021 Jul; 15(7):11296-11308. PubMed ID: 34214394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering highly swellable dual-responsive protein-based injectable hydrogels: the effects of molecular structure and composition in vivo.
    Phan VHG; Thambi T; Kim BS; Huynh DP; Lee DS
    Biomater Sci; 2017 Oct; 5(11):2285-2294. PubMed ID: 29019478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinking of fibrous hydrogels.
    Schoenmakers DC; Rowan AE; Kouwer PHJ
    Nat Commun; 2018 Jun; 9(1):2172. PubMed ID: 29867185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural evolution of photocrosslinked silk fibroin and silk fibroin-based hybrid hydrogels: A small angle and ultra-small angle scattering investigation.
    Whittaker JL; Balu R; Knott R; de Campo L; Mata JP; Rehm C; Hill AJ; Dutta NK; Roy Choudhury N
    Int J Biol Macromol; 2018 Jul; 114():998-1007. PubMed ID: 29545061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly and thermoreversible rheology of perfluorocarbon nanoemulsion-based gels with amphiphilic copolymers.
    Shen J; Pan X; Bhatia SR
    Colloids Surf B Biointerfaces; 2021 Jun; 202():111641. PubMed ID: 33706161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of temperature during assembly on the structure and mechanical properties of peptide-based materials.
    Ramachandran S; Taraban MB; Trewhella J; Gryczynski I; Gryczynski Z; Yu YB
    Biomacromolecules; 2010 Jun; 11(6):1502-6. PubMed ID: 20481580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pH, temperature and shear on the structure-property relationship of lamellar hydrogels from microbial glucolipids probed by in situ rheo-SAXS.
    Ben Messaoud G; Le Griel P; Hermida-Merino D; Baccile N
    Soft Matter; 2020 Mar; 16(10):2540-2551. PubMed ID: 32095796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties.
    O'Connor NA; Jitianu M; Nunez G; Picard Q; Wong M; Akpatsu D; Negrin A; Gharbaran R; Lugo D; Shaker S; Jitianu A; Redenti S
    Int J Biol Macromol; 2018 May; 111():370-378. PubMed ID: 29325744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular Nanostructure Formation of Coassembled Amyloid Inspired Peptides.
    Cinar G; Orujalipoor I; Su CJ; Jeng US; Ide S; Guler MO
    Langmuir; 2016 Jun; 32(25):6506-14. PubMed ID: 27267733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery.
    Ma X; Xu T; Chen W; Qin H; Chi B; Ye Z
    Carbohydr Polym; 2018 Jan; 179():100-109. PubMed ID: 29111032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel.
    Singh NK; Nguyen QV; Kim BS; Lee DS
    Nanoscale; 2015 Feb; 7(7):3043-54. PubMed ID: 25603888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin.
    Vulpe R; Le Cerf D; Dulong V; Popa M; Peptu C; Verestiuc L; Picton L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():388-97. PubMed ID: 27612727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interplay between electrostatic and polar interactions in peptide hydrogels.
    Joyner K; Taraban MB; Feng Y; Yu YB
    Biopolymers; 2013 Apr; 100(2):174-83. PubMed ID: 23616100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.