BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32870804)

  • 1. Photoplethysmographic Waveform and Pulse Rate Variability Analysis in Hyperbaric Environments.
    Pelaez-Coca MD; Hernando A; Lozano MT; Sanchez C; Izquierdo D; Gil E
    IEEE J Biomed Health Inform; 2021 May; 25(5):1550-1560. PubMed ID: 32870804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoplethysmographic Waveform in Hyperbaric Environment.
    Pelaez Coca MD; Hernando A; Sanchez C; Albalate MTL; Izquierdo D; Gil E
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3490-3493. PubMed ID: 31946630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomic Nervous System Measurement in Hyperbaric Environments Using ECG and PPG Signals.
    Hernando A; Pelaez-Coca MD; Lozano MT; Aiger M; Izquierdo D; Sanchez A; Lopez-Jurado MI; Moura I; Fidalgo J; Lazaro J; Gil E
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):132-142. PubMed ID: 29994358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals.
    Peralta E; Lazaro J; Bailon R; Marozas V; Gil E
    Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-complexity PPG pulse detection method for accurate estimation of the pulse rate variability (PRV) during sudden decreases in the signal amplitude.
    Argüello Prada EJ; Paredes Higinio A
    Physiol Meas; 2020 Apr; 41(3):035001. PubMed ID: 32079008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoplethysmographic Waveform Versus Heart Rate Variability to Identify Low-Stress States: Attention Test.
    Pelaez MDC; Albalate MTL; Sanz AH; Valles MA; Gil E
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):1940-1951. PubMed ID: 30452382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term pulse rate variability is better characterized by functional near-infrared spectroscopy than by photoplethysmography.
    Holper L; Seifritz E; Scholkmann F
    J Biomed Opt; 2016 Sep; 21(9):091308. PubMed ID: 27185106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse Rate Variability Analysis Using Remote Photoplethysmography Signals.
    Yu SG; Kim SE; Kim NH; Suh KH; Lee EC
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between heart-rate variability and pulse-rate variability obtained from video-PPG signal using ZCA.
    Iozzia L; Cerina L; Mainardi L
    Physiol Meas; 2016 Nov; 37(11):1934-1944. PubMed ID: 27681456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Assessment of Autonomic Nervous System Activity Based on Photoplethysmography in Healthy Young Men.
    Liu B; Zhang Z; Di X; Wang X; Xie L; Xie W; Zhang J
    Front Physiol; 2021; 12():733264. PubMed ID: 34630151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of using different algorithms and fiducial points for the detection of interbeat intervals, and different sampling rates on the assessment of pulse rate variability from photoplethysmography.
    Mejía-Mejía E; May JM; Kyriacou PA
    Comput Methods Programs Biomed; 2022 May; 218():106724. PubMed ID: 35255373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Filtering of Photoplethysmography Signals in Pulse Rate Variability Analysis
    Mejia-Mejia E; May JM; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5500-5503. PubMed ID: 34892370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The variability of the photoplethysmographic signal--a potential method for the evaluation of the autonomic nervous system.
    Nitzan M; Babchenko A; Khanokh B; Landau D
    Physiol Meas; 1998 Feb; 19(1):93-102. PubMed ID: 9522390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study.
    Hickey M; Phillips JP; Kyriacou PA
    J Clin Monit Comput; 2016 Oct; 30(5):727-36. PubMed ID: 26318315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of time-domain indices, frequency domain measures of heart rate variability derived from ECG waveform and pulse-wave-related HRV among overweight individuals: an observational study.
    Kumar SM; Vaishali K; Maiya GA; Shivashankar KN; Shashikiran U
    F1000Res; 2023; 12():1229. PubMed ID: 37799491
    [No Abstract]   [Full Text] [Related]  

  • 16. Filtering-induced time shifts in photoplethysmography pulse features measured at different body sites: the importance of filter definition and standardization.
    Liu H; Allen J; Khalid SG; Chen F; Zheng D
    Physiol Meas; 2021 Jul; 42(7):. PubMed ID: 34111855
    [No Abstract]   [Full Text] [Related]  

  • 17. Estimation of phase distortions of the photoplethysmographic signal in digital IIR filtering.
    Lapitan DG; Rogatkin DA; Molchanova EA; Tarasov AP
    Sci Rep; 2024 Mar; 14(1):6546. PubMed ID: 38503856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outlier Management for Pulse Rate Variability Analysis from Photoplethysmographic Signals.
    Mejia-Mejia E; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():649-652. PubMed ID: 36086146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of the PPG Sampling Rate in the Pulse Rate Variability Indices Evaluating Several Fiducial Points in Different Pulse Waveforms.
    Pelaez-Coca MD; Hernando A; Lazaro J; Gil E
    IEEE J Biomed Health Inform; 2022 Feb; 26(2):539-549. PubMed ID: 34310329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.