These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32870867)

  • 1. Controllable propagation and transformation of chiral intensity field at focus.
    Ma H; Zhang Y; Min C; Yuan X
    Opt Lett; 2020 Sep; 45(17):4823-4826. PubMed ID: 32870867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of controllable chiral optical fields by vector beams.
    Li M; Yan S; Zhang Y; Yao B
    Nanoscale; 2020 Jul; 12(28):15453-15459. PubMed ID: 32666994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material.
    Ni J; Wang C; Zhang C; Hu Y; Yang L; Lao Z; Xu B; Li J; Wu D; Chu J
    Light Sci Appl; 2017 Jul; 6(7):e17011. PubMed ID: 30167269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral Light Design and Detection Inspired by Optical Antenna Theory.
    Poulikakos LV; Thureja P; Stollmann A; De Leo E; Norris DJ
    Nano Lett; 2018 Aug; 18(8):4633-4640. PubMed ID: 29533637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy flow inversion in an intensity-invariant focusing field.
    Zhou J; Ma H; Zhang Y; Zhang S; Min C; Yuan X
    Opt Lett; 2022 Mar; 47(6):1494-1497. PubMed ID: 35290347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral optical field generated by an annular subzone vortex phase plate.
    Yang D; Li Y; Deng D; Chen Q; Zhang Y; Liu Y; Gao J; Sun M
    Opt Lett; 2018 Oct; 43(19):4594-4597. PubMed ID: 30272691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective optical trapping of chiral nanoparticles using a transverse optical needle field with a transverse spin.
    Li Y; Rui G; Zhou S; Gu B; Yu Y; Cui Y; Zhan Q
    Opt Express; 2020 Sep; 28(19):27808-27822. PubMed ID: 32988066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focused Ion Beam Processing for 3D Chiral Photonics Nanostructures.
    Manoccio M; Esposito M; Passaseo A; Cuscunà M; Tasco V
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33374782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2D to 3D convertible terahertz chiral metamaterial with integrated pneumatic actuator.
    Feng C; Li Q; Zeng Y; Su X; Yu H
    Opt Express; 2018 May; 26(11):14421-14432. PubMed ID: 29877480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity-dependent modulation of optically active signals in a chiral metamaterial.
    Rodrigues SP; Lan S; Kang L; Cui Y; Panuski PW; Wang S; Urbas AM; Cai W
    Nat Commun; 2017 Feb; 8():. PubMed ID: 28240288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical chirality breaking in a bilayered chiral metamaterial.
    Zhao J; Fu Y; Liu Z; Zhou J
    Opt Express; 2017 Sep; 25(19):23051-23059. PubMed ID: 29041609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second-Harmonic Generation Optical Rotation Solely Attributable to Chirality in Plasmonic Metasurfaces.
    Collins JT; Hooper DC; Mark AG; Kuppe C; Valev VK
    ACS Nano; 2018 Jun; 12(6):5445-5451. PubMed ID: 29852066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Chiral 3D Microstructure Using Tightly Focused Multiramp Helico-Conical Optical Beams.
    Wen J; Sun Q; Luo M; Ma C; Yang Z; Su C; Cao C; Zhu D; Ding C; Xu L; Kuang C; Liu X
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures.
    Tian X; Fang Y; Sun M
    Sci Rep; 2015 Dec; 5():17534. PubMed ID: 26621558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable metamaterial for chirality switching and selective intensity modulation.
    Li S; Chen K; Zhang D; Chen Y; Xu Y; Liu J; Wang X; Zhuang S
    Opt Express; 2020 Nov; 28(23):34804-34811. PubMed ID: 33182940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of optical chirality patterns with plane waves, evanescent waves and surface plasmon waves.
    Zhang J; Huang SY; Lin ZH; Huang JS
    Opt Express; 2020 Jan; 28(1):760-772. PubMed ID: 32118998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching the Optical Chirality in Magnetoplasmonic Metasurfaces Using Applied Magnetic Fields.
    Qin J; Deng L; Kang T; Nie L; Feng H; Wang H; Yang R; Liang X; Tang T; Shen J; Li C; Wang H; Luo Y; Armelles G; Bi L
    ACS Nano; 2020 Mar; 14(3):2808-2816. PubMed ID: 32074454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials.
    Jia H; Zhang R; Gao W; Guo Q; Yang B; Hu J; Bi Y; Xiang Y; Liu C; Zhang S
    Science; 2019 Jan; 363(6423):148-151. PubMed ID: 30630925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of chiral fields in a symmetric environment.
    Schäferling M; Yin X; Giessen H
    Opt Express; 2012 Nov; 20(24):26326-36. PubMed ID: 23187487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale chiral imaging under complex optical field excitation with controllable oriented chiral dipole moment.
    Rui G; Ji Y; Gu B; Cui Y; Zhan Q
    Opt Express; 2022 Nov; 30(23):42696-42711. PubMed ID: 36366718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.