These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 32870879)

  • 1. Miniaturizing nanoantennas with hybrid photonic-plasmonic modes for improved metasurfaces.
    Chachamovitz Y; Bartal G
    Opt Lett; 2020 Sep; 45(17):4871-4874. PubMed ID: 32870879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Hybrid Metasurfaces.
    Abdollahramezani S; Hemmatyar O; Taghinejad M; Taghinejad H; Kiarashinejad Y; Zandehshahvar M; Fan T; Deshmukh S; Eftekhar AA; Cai W; Pop E; El-Sayed MA; Adibi A
    Nano Lett; 2021 Feb; 21(3):1238-1245. PubMed ID: 33481600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the quality factors and nonlinear response in hybrid plasmonic-dielectric metasurfaces.
    Wang F; Harutyunyan H
    Opt Express; 2018 Jan; 26(1):120-129. PubMed ID: 29328283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas.
    Linnenbank H; Grynko Y; Förstner J; Linden S
    Light Sci Appl; 2016 Jan; 5(1):e16013. PubMed ID: 30167115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimode hybrid gold-silicon nanoantennas for tailored nanoscale optical confinement.
    McPolin CPT; Vila YN; Krasavin AV; Llorca J; Zayats AV
    Nanophotonics; 2023 Jul; 12(14):2997-3005. PubMed ID: 37457505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear and nonlinear optical properties of hybrid metallic-dielectric plasmonic nanoantennas.
    Hentschel M; Metzger B; Knabe B; Buse K; Giessen H
    Beilstein J Nanotechnol; 2016; 7():111-20. PubMed ID: 26925359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Photon-Plasmon Coupling and Ultrafast Control of Nanoantennas on a Silicon Photonic Chip.
    Chen B; Bruck R; Traviss D; Khokhar AZ; Reynolds S; Thomson DJ; Mashanovich GZ; Reed GT; Muskens OL
    Nano Lett; 2018 Jan; 18(1):610-617. PubMed ID: 29272140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement.
    Babicheva VE
    Nanomaterials (Basel); 2024 Sep; 14(18):. PubMed ID: 39330695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization conversion in plasmonic nanoantennas for metasurfaces using structural asymmetry and mode hybridization.
    Wiecha PR; Black LJ; Wang Y; Paillard V; Girard C; Muskens OL; Arbouet A
    Sci Rep; 2017 Jan; 7():40906. PubMed ID: 28102320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Field Mapping of Optical Fabry-Perot Modes in All-Dielectric Nanoantennas.
    Frolov AY; Verellen N; Li J; Zheng X; Paddubrouskaya H; Denkova D; Shcherbakov MR; Vandenbosch GAE; Panov VI; Van Dorpe P; Fedyanin AA; Moshchalkov VV
    Nano Lett; 2017 Dec; 17(12):7629-7637. PubMed ID: 29083191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid optical antennas with photonic resistors.
    Butakov NA; Schuller JA
    Opt Express; 2015 Nov; 23(23):29698-707. PubMed ID: 26698451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Third Harmonic Generation from Metal-Dielectric Hybrid Nanoantennas.
    Shibanuma T; Grinblat G; Albella P; Maier SA
    Nano Lett; 2017 Apr; 17(4):2647-2651. PubMed ID: 28288274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planar nonlinear metasurface optics and their applications.
    Huang T; Zhao X; Zeng S; Crunteanu A; Shum PP; Yu N
    Rep Prog Phys; 2020 Dec; 83(12):126101. PubMed ID: 33290268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces.
    Li Z; Kim MH; Wang C; Han Z; Shrestha S; Overvig AC; Lu M; Stein A; Agarwal AM; Lončar M; Yu N
    Nat Nanotechnol; 2017 Jul; 12(7):675-683. PubMed ID: 28416817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas.
    Karki A; Cincotti G; Chen S; Stanishev V; Darakchieva V; Wang C; Fahlman M; Jonsson MP
    Adv Mater; 2022 Apr; 34(13):e2107172. PubMed ID: 35064601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic sectoral horn nanoantennas.
    Yang Y; Zhao D; Gong H; Li Q; Qiu M
    Opt Lett; 2014 Jun; 39(11):3204-7. PubMed ID: 24876013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Assembly of Optoplasmonic Hybrid Materials with Tunable Photonic-Plasmonic Properties.
    Hong Y; Ahn W; Boriskina SV; Zhao X; Reinhard BM
    J Phys Chem Lett; 2015 Jun; 6(11):2056-64. PubMed ID: 26266502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of plasmonic directional antennas via evolutionary optimization.
    Wiecha PR; Majorel C; Girard C; Cuche A; Paillard V; Muskens OL; Arbouet A
    Opt Express; 2019 Sep; 27(20):29069-29081. PubMed ID: 31684648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity.
    Maccaferri N; Bergamini L; Pancaldi M; Schmidt MK; Kataja M; Dijken Sv; Zabala N; Aizpurua J; Vavassori P
    Nano Lett; 2016 Apr; 16(4):2533-42. PubMed ID: 26967047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Midrefractive Dielectric Modulator for Broadband Unidirectional Scattering and Effective Radiative Tailoring in the Visible Region.
    Liu P; Yan J; Ma C; Lin Z; Yang G
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22468-76. PubMed ID: 27502321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.