These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3287097)

  • 61. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases.
    Murphy JE; Tibbitts TT; Kantrowitz ER
    J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparative analysis of the double-stranded RNA sequence synthesized in vitro on rat liver chromatin by rat liver (form B) or Escherichia coli RNA polymerase.
    Pays E
    Arch Int Physiol Biochim; 1976; 84(3):647-8. PubMed ID: 64210
    [No Abstract]   [Full Text] [Related]  

  • 63. Metal-protein binding losses in proteomic studies by PAGE-LA-ICP-MS.
    Jiménez MS; Rodriguez L; Gomez MT; Castillo JR
    Talanta; 2010 Apr; 81(1-2):241-7. PubMed ID: 20188915
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis.
    Holtz KM; Kantrowitz ER
    FEBS Lett; 1999 Nov; 462(1-2):7-11. PubMed ID: 10580082
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Manganese-containing superoxide dismutase from Escherichia coli: reversible resolution and metal replacements.
    Ose DE; Fridovich I
    Arch Biochem Biophys; 1979 May; 194(2):360-4. PubMed ID: 36037
    [No Abstract]   [Full Text] [Related]  

  • 66. [Conditions for continuous registration of enzyme activity].
    Sudovtsov VE
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1989; (2):97-100. PubMed ID: 2730936
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biosynthesis of metal sites.
    Kuchar J; Hausinger RP
    Chem Rev; 2004 Feb; 104(2):509-25. PubMed ID: 14871133
    [No Abstract]   [Full Text] [Related]  

  • 68. A structural model for fidelity in transcription.
    Eichhorn GL; Chuknyisky PP; Butzow JJ; Beal RB; Garland C; Janzen CP; Clark P; Tarien E
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7613-7. PubMed ID: 8052629
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In vitro transcription of the Bacillus subtilis phage phi 29 DNA by Bacillus subtilis and Escherichia coli RNA polymerases.
    Sogo JM; Lozano M; Salas M
    Nucleic Acids Res; 1984 Feb; 12(4):1943-60. PubMed ID: 6322128
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Yeast RNA-polymerase B: A zinc protein.
    Lattke H; Weser U
    FEBS Lett; 1976 Jun; 65(3):288-92. PubMed ID: 782912
    [No Abstract]   [Full Text] [Related]  

  • 71. Dephosphorylation of purine mononucleotides by alkaline phosphatases. Substrate specificity and inhibition patterns.
    Jensen MH
    Biochim Biophys Acta; 1979 Nov; 571(1):55-62. PubMed ID: 227468
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The primary structure of human erythrocyte copper/zinc superoxide dismutase: cleavage with Staphylococcus aureus protease, determination of the N-terminal blocking group and location of the disulfide bond.
    Martini F; Schininà ME; Bannister WH; Bannister JV; Barra D; Rotilio G; Bossa F
    Ital J Biochem; 1982; 31(1):39-47. PubMed ID: 7045030
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A nicotinamide-adenine dinucleotide assay utilizing liver alcohol dehydrogenase.
    Schulman MP; Gupta NK; Omachi A; Hoffman G; Marshall WE
    Anal Biochem; 1974 Jul; 60(1):302-11. PubMed ID: 4152749
    [No Abstract]   [Full Text] [Related]  

  • 74. The complete amino acid sequence of human Cu/Zn superoxide dismutase.
    Barra D; Martini F; Bannister JV; Schininà ME; Rotilio G; Bannister WH; Bossa F
    FEBS Lett; 1980 Oct; 120(1):53-6. PubMed ID: 7002610
    [No Abstract]   [Full Text] [Related]  

  • 75. Use of essential metalloelement complexes or chelates in biological studies.
    Sorenson JR
    Free Radic Biol Med; 1992 Nov; 13(5):593-4. PubMed ID: 1459479
    [No Abstract]   [Full Text] [Related]  

  • 76. Editorial (Thematic Issue: Bacterial Metallo-Enzymes as Drug Targets).
    Monti SM; D'Ambrosio K; De Simone G
    Curr Top Med Chem; 2016; 16(21):2329. PubMed ID: 27464882
    [No Abstract]   [Full Text] [Related]  

  • 77. Metal ions in cells.
    Simkiss K
    Endeavour; 1979; 3(1):2-6. PubMed ID: 95580
    [No Abstract]   [Full Text] [Related]  

  • 78. Preparation of metal-hybrid enzymes.
    Maret W; Zeppezauer M
    Methods Enzymol; 1988; 158():79-94. PubMed ID: 3287097
    [No Abstract]   [Full Text] [Related]  

  • 79. The role of metals in enzyme activity.
    Riordan JF
    Ann Clin Lab Sci; 1977; 7(2):119-29. PubMed ID: 192123
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Zn metalloenzyme activities. Changes and biochemical aspects in Zn deficiency.
    Roth HP; Kirchgessner M
    World Rev Nutr Diet; 1980; 34():144-60. PubMed ID: 6766599
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.