These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3287097)

  • 81. Inhibitors of superoxide dismutases: a cautionary tale.
    Hassan HM; Dougherty H; Fridovich I
    Arch Biochem Biophys; 1980 Feb; 199(2):349-54. PubMed ID: 6244777
    [No Abstract]   [Full Text] [Related]  

  • 82. Active-site zinc ligands and activated H2O of zinc enzymes.
    Vallee BL; Auld DS
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):220-4. PubMed ID: 2104979
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Preparation of metal-hybrid enzymes.
    Maret W; Zeppezauer M
    Methods Enzymol; 1988; 158():79-94. PubMed ID: 3287097
    [No Abstract]   [Full Text] [Related]  

  • 84. The role of metals in enzyme activity.
    Riordan JF
    Ann Clin Lab Sci; 1977; 7(2):119-29. PubMed ID: 192123
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Zn metalloenzyme activities. Changes and biochemical aspects in Zn deficiency.
    Roth HP; Kirchgessner M
    World Rev Nutr Diet; 1980; 34():144-60. PubMed ID: 6766599
    [No Abstract]   [Full Text] [Related]  

  • 86. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Enzymatic interconversion of active and inactive forms of enzymes.
    Segal HL
    Science; 1973 Apr; 180(4081):25-32. PubMed ID: 4144174
    [No Abstract]   [Full Text] [Related]  

  • 88. Structure and catalysis of enzymes.
    Lipscomb WN
    Annu Rev Biochem; 1983; 52():17-34. PubMed ID: 6225375
    [No Abstract]   [Full Text] [Related]  

  • 89. [Two forms of RNA polymerase from Escherichia coli (author's transl)].
    Iwakura Y
    Tanpakushitsu Kakusan Koso; 1974 Jul; 19(7):481-91. PubMed ID: 4610641
    [No Abstract]   [Full Text] [Related]  

  • 90. Metal-binding promiscuity in artificial metalloenzyme design.
    Pordea A
    Curr Opin Chem Biol; 2015 Apr; 25():124-32. PubMed ID: 25603469
    [TBL] [Abstract][Full Text] [Related]  

  • 91. New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes.
    Vallee BL; Auld DS
    Biochemistry; 1993 Jul; 32(26):6493-500. PubMed ID: 8329379
    [No Abstract]   [Full Text] [Related]  

  • 92. The design of metal-binding sites in proteins.
    Regan L
    Annu Rev Biophys Biomol Struct; 1993; 22():257-87. PubMed ID: 8347991
    [No Abstract]   [Full Text] [Related]  

  • 93. Metals in Biology 2016: Molecular Basis of Selection of Metals by Enzymes.
    Guengerich FP
    J Biol Chem; 2016 Sep; 291(40):20838-20839. PubMed ID: 27462079
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Metalloproteins and metal sensing.
    Waldron KJ; Rutherford JC; Ford D; Robinson NJ
    Nature; 2009 Aug; 460(7257):823-30. PubMed ID: 19675642
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis.
    Holtz KM; Kantrowitz ER
    FEBS Lett; 1999 Nov; 462(1-2):7-11. PubMed ID: 10580082
    [TBL] [Abstract][Full Text] [Related]  

  • 96.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 97.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 98.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 99.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.