These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32870980)

  • 1. Circulation in Insect Wings.
    Salcedo MK; Socha JJ
    Integr Comp Biol; 2020 Nov; 60(5):1208-1220. PubMed ID: 32870980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolymph circulation in insect flight appendages: physiology of the wing heart and circulatory flow in the wings of the mosquito Anopheles gambiae.
    Chintapalli RT; Hillyer JF
    J Exp Biol; 2016 Dec; 219(Pt 24):3945-3951. PubMed ID: 27742896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex hemolymph circulation patterns in grasshopper wings.
    Salcedo MK; Jun BH; Socha JJ; Pierce NE; Vlachos PP; Combes SA
    Commun Biol; 2023 Mar; 6(1):313. PubMed ID: 36959465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality.
    Pass G
    Arthropod Struct Dev; 2018 Jul; 47(4):391-407. PubMed ID: 29859244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.
    Donoughe S; Crall JD; Merz RA; Combes SA
    J Morphol; 2011 Dec; 272(12):1409-21. PubMed ID: 21915894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2979-87. PubMed ID: 12878666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin.
    Appel E; Heepe L; Lin CP; Gorb SN
    J Anat; 2015 Oct; 227(4):561-82. PubMed ID: 26352411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient use of hemolymph for hydraulic wing expansion in cicadas.
    Salcedo MK; Ellis TE; Sáenz ÁS; Lu J; Worrell T; Madigan ML; Socha JJ
    Sci Rep; 2023 Apr; 13(1):6298. PubMed ID: 37072416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Golden ratio in venation patterns of dragonfly wings.
    Lu K; Shen S; Miller LM; Huang X
    Sci Rep; 2023 May; 13(1):7820. PubMed ID: 37188747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of hydrodynamic pressure and vein strength on the super-elasticity of honeybee wings.
    Zhao J; Xu M; Liang Y; Yan S; Niu W
    J Insect Physiol; 2018; 109():100-106. PubMed ID: 30006106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An image based application in Matlab for automated modelling and morphological analysis of insect wings.
    Eshghi S; Nabati F; Shafaghi S; Nooraeefar V; Darvizeh A; Gorb SN; Rajabi H
    Sci Rep; 2022 Aug; 12(1):13917. PubMed ID: 35977980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings.
    Rajabi H; Shafiei A; Darvizeh A; Gorb SN
    Sci Rep; 2016 Dec; 6():39039. PubMed ID: 27966641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous Expansion of Grasshopper Wings Reveals External Forces Contribute to Final Adult Wing Shape.
    Salcedo MK; Jung S; Combes SA
    Integr Comp Biol; 2023 Dec; 63(6):1111-1126. PubMed ID: 37715350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights on basivenal sclerites using 3D tools and homology of wing veins in Odonatoptera (Insecta).
    Jacquelin L; Desutter-Grandcolas L; Chintauan-Marquier I; Boistel R; Zheng D; Prokop J; Nel A
    Sci Rep; 2018 Jan; 8(1):238. PubMed ID: 29321486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wing flexibility improves bumblebee flight stability.
    Mistick EA; Mountcastle AM; Combes SA
    J Exp Biol; 2016 Nov; 219(Pt 21):3384-3390. PubMed ID: 27638618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The forewing of a black cicada Cryptotympana atrata (Hemiptera, Homoptera: Cicadidae): Microscopic structures and mechanical properties.
    Li Q; Ji A; Shen H; Han Q; Qin G
    Microsc Res Tech; 2022 Sep; 85(9):3153-3164. PubMed ID: 35656939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect wing damage: causes, consequences and compensatory mechanisms.
    Rajabi H; Dirks JH; Gorb SN
    J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32366698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The function of wing bullae in mayflies (Insecta: Ephemeroptera) reveals new insights into the early evolution of Pterygota.
    Domínguez E; van de Kamp T; Mikó I; Cuezzo MG; Staniczek AH
    BMC Biol; 2023 Nov; 21(1):268. PubMed ID: 37996928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical strategies for mitigating collision damage in insect wings: structural design versus embedded elastic materials.
    Mountcastle AM; Combes SA
    J Exp Biol; 2014 Apr; 217(Pt 7):1108-15. PubMed ID: 24311806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.