BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32871115)

  • 1. NMR structural studies and mechanism of action of Lactophoricin analogs as antimicrobial peptides.
    Jeong JH; Kim M; Kim Y
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183469. PubMed ID: 32871115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs.
    Jeong JH; Kim JS; Choi SS; Kim Y
    Biophys J; 2016 Jan; 110(2):423-430. PubMed ID: 26789765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Mechanismic Studies of Lactophoricin Analog, Novel Antibacterial Peptide.
    Kim M; Son J; Kim Y
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33918526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, Characterization, and Antimicrobial Activity of a Novel Antimicrobial Peptide Derived from Bovine Lactophoricin.
    Kim JS; Joeng JH; Kim Y
    J Microbiol Biotechnol; 2017 Apr; 27(4):759-767. PubMed ID: 28104898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, expression, isotope labeling, purification, and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli.
    Park TJ; Kim JS; Choi SS; Kim Y
    Protein Expr Purif; 2009 May; 65(1):23-9. PubMed ID: 19130889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution and solid-state NMR structural studies of antimicrobial peptides LPcin-I and LPcin-II.
    Park TJ; Kim JS; Ahn HC; Kim Y
    Biophys J; 2011 Sep; 101(5):1193-201. PubMed ID: 21889457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Engineering of Antimicrobial Peptides Based on LPcin-YK3, an Antimicrobial Peptide Derivative from Bovine Milk.
    Kim JS; Jeong JH; Kim Y
    J Microbiol Biotechnol; 2018 Mar; 28(3):381-390. PubMed ID: 29316742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial Activity of Antimicrobial Peptide LPcin-YK3 Derived from Bovine Lactophoricin.
    Kim JS; Jeong JH; Cho JH; Lee DH; Kim Y
    J Microbiol Biotechnol; 2018 Aug; 28(8):1299-1309. PubMed ID: 30021422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the bovine milk peptide LPcin-YK3 selection in the proteolytic system of Lactobacillus species.
    Sung WY; Yu JW; Hwang JT; Nam HJ; Park JY; Kim Y; Cho JH
    J Pept Sci; 2020 Aug; 26(8):e3268. PubMed ID: 32567752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How a short pore forming peptide spans the lipid membrane.
    Vestergaard M; Christensen M; Hansen SK; Grønvall D; Kjølbye LR; Vosegaard T; Schiøtt B
    Biointerphases; 2017 May; 12(2):02D405. PubMed ID: 28476091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin.
    Haney EF; Nazmi K; Bolscher JG; Vogel HJ
    Biochim Biophys Acta; 2012 Mar; 1818(3):762-75. PubMed ID: 22155682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteolytic activation of proteose peptone component 3 by release of a C-terminal peptide with antibacterial properties.
    Pedersen LR; Hansted JG; Nielsen SB; Petersen TE; Sørensen US; Otzen D; Sørensen ES
    J Dairy Sci; 2012 Jun; 95(6):2819-29. PubMed ID: 22612919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Disruptions of the Outer Membranes of Gram-Negative Bacteria by Rationally Designed Amphiphilic Antimicrobial Peptides.
    Gong H; Hu X; Liao M; Fa K; Ciumac D; Clifton LA; Sani MA; King SM; Maestro A; Separovic F; Waigh TA; Xu H; McBain AJ; Lu JR
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16062-16074. PubMed ID: 33797891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy.
    Bechinger B; Salnikov ES
    Chem Phys Lipids; 2012 Apr; 165(3):282-301. PubMed ID: 22366307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of bovine lactoferricin with acidic phospholipid bilayers and its antimicrobial activity as studied by solid-state NMR.
    Umeyama M; Kira A; Nishimura K; Naito A
    Biochim Biophys Acta; 2006 Sep; 1758(9):1523-8. PubMed ID: 16884683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes.
    Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F
    Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes.
    Balla MS; Bowie JH; Separovic F
    Eur Biophys J; 2004 Apr; 33(2):109-16. PubMed ID: 13680211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial Peptide Structures: From Model Membranes to Live Cells.
    Sani MA; Separovic F
    Chemistry; 2018 Jan; 24(2):286-291. PubMed ID: 29068097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure Elucidation and Functional Studies of a Novel β-hairpin Antimicrobial Peptide from the Marine Polychaeta
    Panteleev PV; Tsarev AV; Safronova VN; Reznikova OV; Bolosov IA; Sychev SV; Shenkarev ZO; Ovchinnikova TV
    Mar Drugs; 2020 Dec; 18(12):. PubMed ID: 33291782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.