These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
533 related articles for article (PubMed ID: 32871521)
1. Water management affects arsenic uptake and translocation by regulating arsenic bioavailability, transporter expression and thiol metabolism in rice (Oryza sativa L.). Cao Z; Pan J; Yang Y; Cao Z; Xu P; Chen M; Guan M Ecotoxicol Environ Saf; 2020 Dec; 206():111208. PubMed ID: 32871521 [TBL] [Abstract][Full Text] [Related]
2. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Cao ZZ; Qin ML; Lin XY; Zhu ZW; Chen MX Environ Pollut; 2018 Jul; 238():76-84. PubMed ID: 29547864 [TBL] [Abstract][Full Text] [Related]
3. Water management of alternate wetting and drying reduces the accumulation of arsenic in brown rice - as dynamic study from rhizosphere soil to rice. Yang Y; Hu H; Fu Q; Zhu J; Huang G Ecotoxicol Environ Saf; 2019 Dec; 185():109711. PubMed ID: 31574369 [TBL] [Abstract][Full Text] [Related]
4. Accumulation, translocation and conversion of six arsenic species in rice plants grown near a mine impacted city. Ma L; Wang L; Jia Y; Yang Z Chemosphere; 2017 Sep; 183():44-52. PubMed ID: 28531558 [TBL] [Abstract][Full Text] [Related]
5. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
6. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in arsenic bioavailability, transport, and speciation in rice. Wang X; Peng B; Tan C; Ma L; Rathinasabapathi B Environ Sci Pollut Res Int; 2015 Apr; 22(8):5742-50. PubMed ID: 25827791 [TBL] [Abstract][Full Text] [Related]
8. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management. Wan Y; Camara AY; Huang Q; Yu Y; Wang Q; Li H Ecotoxicol Environ Saf; 2018 Jul; 156():67-74. PubMed ID: 29529515 [TBL] [Abstract][Full Text] [Related]
9. Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies. Zecchin S; Corsini A; Martin M; Cavalca L Appl Microbiol Biotechnol; 2017 Sep; 101(17):6725-6738. PubMed ID: 28660288 [TBL] [Abstract][Full Text] [Related]
10. Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Hu P; Ouyang Y; Wu L; Shen L; Luo Y; Christie P J Environ Sci (China); 2015 Jan; 27():225-31. PubMed ID: 25597681 [TBL] [Abstract][Full Text] [Related]
11. Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.). Rahman MA; Rahman MM; Kadohashi K; Maki T; Hasegawa H Chemosphere; 2011 Jul; 84(4):439-45. PubMed ID: 21507453 [TBL] [Abstract][Full Text] [Related]
12. Ultra-structure alteration via enhanced silicon uptake in arsenic stressed rice cultivars under intermittent irrigation practices in Bengal delta basin. Majumdar A; Upadhyay MK; Kumar JS; Sheena ; Barla A; Srivastava S; Jaiswal MK; Bose S Ecotoxicol Environ Saf; 2019 Sep; 180():770-779. PubMed ID: 31154202 [TBL] [Abstract][Full Text] [Related]
13. [Reducing cadmium content of rice grains by means of flooding and a few problems]. Kawasaki A; Arao T; Ishikawa S Nihon Eiseigaku Zasshi; 2012; 67(4):478-83. PubMed ID: 23095358 [TBL] [Abstract][Full Text] [Related]
14. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice. Yu HY; Wang X; Li F; Li B; Liu C; Wang Q; Lei J Environ Pollut; 2017 May; 224():136-147. PubMed ID: 28202263 [TBL] [Abstract][Full Text] [Related]
15. Decreasing arsenic in rice: Interactions of soil sulfate amendment and water management. Fang X; Christl I; Colina Blanco AE; Planer-Friedrich B; Zhao FJ; Kretzschmar R Environ Pollut; 2023 Apr; 322():121152. PubMed ID: 36731739 [TBL] [Abstract][Full Text] [Related]
16. [Effects of arsenic from soil and irrigation-water on As accumulation on the root surfaces and in mature rice plants (Oryza sativa L.)]. Liu WJ; Zhu YG; Hu Y; Zhao QL Huan Jing Ke Xue; 2008 Apr; 29(4):862-8. PubMed ID: 18637329 [TBL] [Abstract][Full Text] [Related]
17. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem. Das S; Chou ML; Jean JS; Liu CC; Yang HJ Sci Total Environ; 2016 Jan; 542(Pt A):642-52. PubMed ID: 26546760 [TBL] [Abstract][Full Text] [Related]
18. [Influence of sulfur on the bioavailability of arsenic uptake by rice (Oryza. sativa L. ) and its speciation in soil ]. Yang SJ; Tang BP; Wang DC; Rao W; Zhang YN; Wang D; Zhu YJ Huan Jing Ke Xue; 2014 Sep; 35(9):3553-63. PubMed ID: 25518679 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of uptake, translocation, and accumulation of arsenic species by six different Brazilian rice (Oryza sativa L.) cultivars. Paulelli ACC; Martins AC; Batista BL; Barbosa F Ecotoxicol Environ Saf; 2019 Mar; 169():376-382. PubMed ID: 30466018 [TBL] [Abstract][Full Text] [Related]
20. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Li H; Chen XW; Wong MH Chemosphere; 2016 Feb; 145():224-30. PubMed ID: 26688259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]