These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
533 related articles for article (PubMed ID: 32871521)
21. [Accumulation of S, Fe and Cd in rhizosphere of rice and their uptake in rice with different water managements]. Zhang XX; Zhang XX; Zheng YJ; Wang RP; Chen NC; Lu PX Huan Jing Ke Xue; 2013 Jul; 34(7):2837-46. PubMed ID: 24028021 [TBL] [Abstract][Full Text] [Related]
22. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044 [TBL] [Abstract][Full Text] [Related]
23. Assessment of Cd availability in rice cultivation (Oryza sativa): Effects of amendments and the spatiotemporal chemical changes in the rhizosphere and bulk soil. Zeng T; Khaliq MA; Li H; Jayasuriya P; Guo J; Li Y; Wang G Ecotoxicol Environ Saf; 2020 Jun; 196():110490. PubMed ID: 32276161 [TBL] [Abstract][Full Text] [Related]
24. Effect of water management, arsenic and phosphorus levels on rice in a high-arsenic soil-water system: II. Arsenic uptake. Talukder AS; Meisner CA; Sarkar MA; Islam MS; Sayre KD; Duxbury JM; Lauren JG Ecotoxicol Environ Saf; 2012 Jun; 80():145-51. PubMed ID: 22425734 [TBL] [Abstract][Full Text] [Related]
25. Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Kumarathilaka P; Seneweera S; Meharg A; Bundschuh J Sci Total Environ; 2018 Nov; 642():485-496. PubMed ID: 29908507 [TBL] [Abstract][Full Text] [Related]
26. Arsenic accumulation, distribution and source analysis of rice in a typical growing area in north China. Wang L; Gao S; Yin X; Yu X; Luan L Ecotoxicol Environ Saf; 2019 Jan; 167():429-434. PubMed ID: 30368136 [TBL] [Abstract][Full Text] [Related]
27. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains. Zhang X; Wu S; Ren B; Chen B Mycorrhiza; 2016 May; 26(4):299-309. PubMed ID: 26585898 [TBL] [Abstract][Full Text] [Related]
28. OsPTR7 (OsNPF8.1), a Putative Peptide Transporter in Rice, is Involved in Dimethylarsenate Accumulation in Rice Grain. Tang Z; Chen Y; Chen F; Ji Y; Zhao FJ Plant Cell Physiol; 2017 May; 58(5):904-913. PubMed ID: 28340032 [TBL] [Abstract][Full Text] [Related]
29. Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies. Dittmar J; Voegelin A; Maurer F; Roberts LC; Hug SJ; Saha GC; Ali MA; Badruzzaman AB; Kretzschmar R Environ Sci Technol; 2010 Dec; 44(23):8842-8. PubMed ID: 21043519 [TBL] [Abstract][Full Text] [Related]
31. Continuous flooding stimulates root iron plaque formation and reduces chromium accumulation in rice (Oryza sativa L.). Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J Sci Total Environ; 2021 Sep; 788():147786. PubMed ID: 34023601 [TBL] [Abstract][Full Text] [Related]
32. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J Ecotoxicol Environ Saf; 2021 Jan; 208():111506. PubMed ID: 33120269 [TBL] [Abstract][Full Text] [Related]
33. Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere. Kuramata M; Sakakibara F; Kataoka R; Abe T; Asano M; Baba K; Takagi K; Ishikawa S Environ Microbiol; 2015 Jun; 17(6):1897-909. PubMed ID: 25039305 [TBL] [Abstract][Full Text] [Related]
34. Temporal variations in arsenic uptake by rice plants in Bangladesh: the role of iron plaque in paddy fields irrigated with groundwater. Garnier JM; Travassac F; Lenoble V; Rose J; Zheng Y; Hossain MS; Chowdhury SH; Biswas AK; Ahmed KM; Cheng Z; van Geen A Sci Total Environ; 2010 Sep; 408(19):4185-93. PubMed ID: 20576285 [TBL] [Abstract][Full Text] [Related]
35. Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. Batista BL; Nigar M; Mestrot A; Rocha BA; Barbosa Júnior F; Price AH; Raab A; Feldmann J J Exp Bot; 2014 Apr; 65(6):1467-79. PubMed ID: 24600019 [TBL] [Abstract][Full Text] [Related]
37. Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Seyfferth AL; Webb SM; Andrews JC; Fendorf S Environ Sci Technol; 2010 Nov; 44(21):8108-13. PubMed ID: 20936818 [TBL] [Abstract][Full Text] [Related]
38. Impact of water and fertilizer management on arsenic bioaccumulation and speciation in rice plants grown under greenhouse conditions. Islam S; Rahman MM; Naidu R Chemosphere; 2019 Jan; 214():606-613. PubMed ID: 30290361 [TBL] [Abstract][Full Text] [Related]
39. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.). Jin W; Wang Z; Sun Y; Wang Y; Bi C; Zhou L; Zheng X Ecotoxicol Environ Saf; 2020 Feb; 189():109928. PubMed ID: 31767458 [TBL] [Abstract][Full Text] [Related]
40. Editing Silicon Transporter Genes to Reduce Arsenic Accumulation in Rice. Xu X; Sun SK; Zhang W; Tang Z; Zhao FJ Environ Sci Technol; 2024 Jan; 58(4):1976-1985. PubMed ID: 38232111 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]