These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 3287180)

  • 1. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein.
    Hope IA; Mahadevan S; Struhl K
    Nature; 1988 Jun; 333(6174):635-40. PubMed ID: 3287180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription factor GCN4 for control of amino acid biosynthesis also regulates the expression of the gene for lipoamide dehydrogenase.
    Zaman Z; Bowman SB; Kornfeld GD; Brown AJ; Dawes IW
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):855-62. PubMed ID: 10359673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The JUN oncoprotein, a vertebrate transcription factor, activates transcription in yeast.
    Struhl K
    Nature; 1988 Apr; 332(6165):649-50. PubMed ID: 3128739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of growth inhibition by GAL4-L kappa B-alpha in Saccharomyces cerevisiae.
    Morin PJ; Downs JA; Snodgrass AM; Gilmore TD
    Cell Growth Differ; 1995 Jul; 6(7):789-98. PubMed ID: 7547500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overproduction of the Opi1 repressor inhibits transcriptional activation of structural genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae.
    Wagner C; Blank M; Strohmann B; Schüller HJ
    Yeast; 1999 Jul; 15(10A):843-54. PubMed ID: 10407264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [PHO2 and GCN4 transcription activators in the regulation of Saccharomyces cerevisiae acid phosphatase synthesis].
    Belova IV; Sambuk EV; Padkina MV; Smirnov MN
    Genetika; 1992 May; 28(5):11-8. PubMed ID: 1639254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the MSS51 region on chromosome XII of Saccharomyces cerevisiae.
    Simon M; Della Seta F; Sor F; Faye G
    Yeast; 1992 Jul; 8(7):559-67. PubMed ID: 1523888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and characterization of a general amino acid control transcriptional activator from the chestnut blight fungus Cryphonectria parasitica.
    Wang P; Larson TG; Chen CH; Pawlyk DM; Clark JA; Nuss DL
    Fungal Genet Biol; 1998 Feb; 23(1):81-94. PubMed ID: 9501479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating yeast transcriptional activators containing no yeast protein sequences.
    Ruden DM; Ma J; Li Y; Wood K; Ptashne M
    Nature; 1991 Mar; 350(6315):250-2. PubMed ID: 2005981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutant bZip-DNA complexes with four quasi-identical protein-DNA interfaces.
    Suckow M; Lopata M; Seydel A; Kisters-Woike B; von Wilcken-Bergmann B; Müller-Hill B
    EMBO J; 1996 Feb; 15(3):598-606. PubMed ID: 8599943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activation specificities of wild-type and mutant Gcn4p in vivo can be different from the DNA binding specificities of the corresponding bZip peptides in vitro.
    Suckow M; Hollenberg CP
    J Mol Biol; 1998 Mar; 276(5):887-902. PubMed ID: 9566194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence homology of the yeast regulatory protein ADR1 with Xenopus transcription factor TFIIIA.
    Hartshorne TA; Blumberg H; Young ET
    Nature; 1986 Mar 20-26; 320(6059):283-7. PubMed ID: 3515197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short, hydrophobic, alanine-based proteins based on the basic region/leucine zipper protein motif: overcoming inclusion body formation and protein aggregation during overexpression, purification, and renaturation.
    Lajmi AR; Wallace TR; Shin JA
    Protein Expr Purif; 2000 Apr; 18(3):394-403. PubMed ID: 10733895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional activation by yeast GCN4, a functional homolog to the jun oncoprotein.
    Struhl K; Brandl CJ; Chen W; Harbury PA; Hope IA; Mahadevan S
    Cold Spring Harb Symp Quant Biol; 1988; 53 Pt 2():701-9. PubMed ID: 3151184
    [No Abstract]   [Full Text] [Related]  

  • 17. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids.
    Drysdale CM; Dueñas E; Jackson BM; Reusser U; Braus GH; Hinnebusch AG
    Mol Cell Biol; 1995 Mar; 15(3):1220-33. PubMed ID: 7862116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The leucine zipper symmetrically positions the adjacent basic regions for specific DNA binding.
    Pu WT; Struhl K
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):6901-5. PubMed ID: 1871104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology between the DNA-binding domain of the GCN4 regulatory protein of yeast and the carboxyl-terminal region of a protein coded for by the oncogene jun.
    Vogt PK; Bos TJ; Doolittle RF
    Proc Natl Acad Sci U S A; 1987 May; 84(10):3316-9. PubMed ID: 3554236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function.
    Hannig EM; Hinnebusch AG
    Mol Cell Biol; 1988 Nov; 8(11):4808-20. PubMed ID: 3062370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.