These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 32871846)
1. Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2. Lehrer S; Rheinstein PH In Vivo; 2020; 34(5):3023-3026. PubMed ID: 32871846 [TBL] [Abstract][Full Text] [Related]
2. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Souza PFN; Lopes FES; Amaral JL; Freitas CDT; Oliveira JTA Int J Biol Macromol; 2020 Dec; 164():66-76. PubMed ID: 32693122 [TBL] [Abstract][Full Text] [Related]
3. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Basu A; Sarkar A; Maulik U Sci Rep; 2020 Oct; 10(1):17699. PubMed ID: 33077836 [TBL] [Abstract][Full Text] [Related]
4. Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: Insights from a molecular mechanics-assisted structure-based virtual screening experiment. Teralı K; Baddal B; Gülcan HO J Mol Graph Model; 2020 Nov; 100():107697. PubMed ID: 32739642 [TBL] [Abstract][Full Text] [Related]
5. In Silico Screening of Potential Spike Glycoprotein Inhibitors of SARS-CoV-2 with Drug Repurposing Strategy. Wei TZ; Wang H; Wu XQ; Lu Y; Guan SH; Dong FQ; Dong CL; Zhu GL; Bao YZ; Zhang J; Wang GY; Li HY Chin J Integr Med; 2020 Sep; 26(9):663-669. PubMed ID: 32740825 [TBL] [Abstract][Full Text] [Related]
6. A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2 Therapeutically Relevant Proteins by Combining Pocket and Docking Searches as Implemented in Pockets 2.0. Gervasoni S; Vistoli G; Talarico C; Manelfi C; Beccari AR; Studer G; Tauriello G; Waterhouse AM; Schwede T; Pedretti A Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708196 [TBL] [Abstract][Full Text] [Related]
7. Recognition of Potential COVID-19 Drug Treatments through the Study of Existing Protein-Drug and Protein-Protein Structures: An Analysis of Kinetically Active Residues. Perišić O Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32967116 [TBL] [Abstract][Full Text] [Related]
8. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Caly L; Druce JD; Catton MG; Jans DA; Wagstaff KM Antiviral Res; 2020 Jun; 178():104787. PubMed ID: 32251768 [TBL] [Abstract][Full Text] [Related]
9. Development of a Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung Exposure in Humans Following Oral Administration of Ivermectin for COVID-19 Drug Repurposing. Jermain B; Hanafin PO; Cao Y; Lifschitz A; Lanusse C; Rao GG J Pharm Sci; 2020 Dec; 109(12):3574-3578. PubMed ID: 32891630 [TBL] [Abstract][Full Text] [Related]
10. Mass Drug Administration and Worms Experience in Africa: Envisage Repurposing Ivermectin for SARS-COV-2. Wamae CN Am J Trop Med Hyg; 2020 Jul; 103(1):10-11. PubMed ID: 32458795 [No Abstract] [Full Text] [Related]
11. Lack of efficacy of standard doses of ivermectin in severe COVID-19 patients. Camprubí D; Almuedo-Riera A; Martí-Soler H; Soriano A; Hurtado JC; Subirà C; Grau-Pujol B; Krolewiecki A; Muñoz J PLoS One; 2020; 15(11):e0242184. PubMed ID: 33175880 [TBL] [Abstract][Full Text] [Related]
12. White paper on Ivermectin as a potential therapy for COVID-19. Vora A; Arora VK; Behera D; Tripathy SK Indian J Tuberc; 2020 Jul; 67(3):448-451. PubMed ID: 32825892 [TBL] [Abstract][Full Text] [Related]
13. Continuous high-dose ivermectin appears to be safe in patients with acute myelogenous leukemia and could inform clinical repurposing for COVID-19 infection. de Castro CG; Gregianin LJ; Burger JA Leuk Lymphoma; 2020 Oct; 61(10):2536-2537. PubMed ID: 32611256 [No Abstract] [Full Text] [Related]
14. The Battle against COVID 19 Pandemic: What we Need to Know Before we "Test Fire" Ivermectin. Banerjee K; Nandy M; Dalai CK; Ahmed SN Drug Res (Stuttg); 2020 Aug; 70(8):337-340. PubMed ID: 32559771 [TBL] [Abstract][Full Text] [Related]
15. Blocking the interactions between human ACE2 and coronavirus spike glycoprotein by selected drugs: a computational perspective. Duru CE; Umar HIU; Duru IA; Enenebeaku UE; Ngozi-Olehi LC; Enyoh CE Environ Anal Health Toxicol; 2021 Jun; 36(2):e2021010-0. PubMed ID: 34130375 [TBL] [Abstract][Full Text] [Related]
16. The Approved Dose of Ivermectin Alone is not the Ideal Dose for the Treatment of COVID-19. Schmith VD; Zhou JJ; Lohmer LRL Clin Pharmacol Ther; 2020 Oct; 108(4):762-765. PubMed ID: 32378737 [TBL] [Abstract][Full Text] [Related]
17. The binding mechanism of ivermectin and levosalbutamol with spike protein of SARS-CoV-2. Saha JK; Raihan MJ Struct Chem; 2021; 32(5):1985-1992. PubMed ID: 33867777 [TBL] [Abstract][Full Text] [Related]
18. Computational Prediction of the Interaction of Ivermectin with Fibrinogen. Vottero P; Tavernini S; Santin AD; Scheim DE; Tuszynski JA; Aminpour M Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511206 [TBL] [Abstract][Full Text] [Related]
19. Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats. Chaccour C; Abizanda G; Irigoyen-Barrio Á; Casellas A; Aldaz A; Martínez-Galán F; Hammann F; Gil AG Sci Rep; 2020 Oct; 10(1):17073. PubMed ID: 33051517 [TBL] [Abstract][Full Text] [Related]
20. Molecular docking and dynamics studies of curcumin with COVID-19 proteins. Suravajhala R; Parashar A; Choudhir G; Kumar A; Malik B; Nagaraj VA; Padmanaban G; Polavarapu R; Suravajhala P; Kishor PBK Netw Model Anal Health Inform Bioinform; 2021; 10(1):44. PubMed ID: 34131556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]