These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32872153)

  • 21. Irradiation induced grain boundary flow--a new creep mechanism at the nanoscale.
    Ashkenazy Y; Averback RS
    Nano Lett; 2012 Aug; 12(8):4084-9. PubMed ID: 22775230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Structure and Hydrogen on the Short-Term Creep of Titanium Ti-2.9Al-4.5V-4.8Mo Alloy.
    Grabovetskaya G; Mishin I; Stepanova E; Zabudchenko O
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.
    Shu X; Kong D; Lu Y; Long H; Sun S; Sha X; Zhou H; Chen Y; Mao S; Liu Y
    Sci Rep; 2017 Oct; 7(1):13264. PubMed ID: 29038576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical Properties and Deformation Mechanisms of Nanocrystalline U-10Mo Alloys by Molecular Dynamics Simulation.
    Ou X; Shen Y; Yang Y; You Z; Wang P; Yang Y; Tian X
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of serrated grain boundary on tensile and creep properties of a precipitation strengthened high entropy alloy.
    Lee JL; Wang PT; Lo KC; Shen PK; Tsou NT; Kakehi K; Murakami H; Tsai CW; Gorsse S; Yeh AC
    Sci Technol Adv Mater; 2023; 24(1):2158043. PubMed ID: 36684848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy.
    Hou J; Li Q; Wu C; Zheng L
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation.
    Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microstructural Evolution and Mechanical Properties of an Advanced γ-TiAl Based Alloy Processed by Spark Plasma Sintering.
    Wimler D; Lindemann J; Clemens H; Mayer S
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Significantly enhanced creep resistance of low volume fraction in-situ TiBw/Ti6Al4V composites by architectured network reinforcements.
    Wang S; Huang LJ; Geng L; Scarpa F; Jiao Y; Peng HX
    Sci Rep; 2017 Jan; 7():40823. PubMed ID: 28094350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effects of Hot-Pack Coating Materials on the Pack Rolling Process and Microstructural Characteristics during Ti-46Al-8Nb Sheet Fabrication.
    Huang H; Liao M; Yu Q; Liu G; Wang Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Microstructural Evolution, Tensile Properties, and Phase Hardness of a TiAl Alloy with a High Content of the β Phase.
    Cui N; Wu Q; Yan Z; Zhou H; Wang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31466224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.
    Takeda K; Tobushi H; Pieczyska EA
    Materials (Basel); 2012 May; 5(5):909-921. PubMed ID: 28817016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel.
    Husain A; La P; Hongzheng Y; Jie S
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research on Johnson-Cook Constitutive Model of γ-TiAl Alloy with Improved Parameters.
    Shi L; Wang T; Wang L; Liu E
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superplastic extensibility of nanocrystalline copper at room temperature.
    Lu L; Sui ML; Lu K
    Science; 2000 Feb; 287(5457):1463-6. PubMed ID: 10688789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of T5 Treatment on Microstructure and Mechanical Properties at Elevated Temperature of AZ80-Ag Alloy.
    Zeng G; Liu C; Gao Y; Jiang S; Yu S; Chen Z
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31575063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2004 Jan; 3(1):43-7. PubMed ID: 14704784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2002 Sep; 1(1):45-8. PubMed ID: 12618848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of the Micromechanical Behavior of a Ti
    Wang J; Ma Q; Cheng H; Yu H; Zhang S; Shang H; Zhang G; Wang W
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superplastic Deformation Mechanisms in Fine-Grained 2050 Al-Cu-Li Alloys.
    Li H; Liu X; Sun Q; Ye L; Zhang X
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.