BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32872412)

  • 1. GFP Fusion to the N-Terminus of MotB Affects the Proton Channel Activity of the Bacterial Flagellar Motor in
    Morimoto YV; Namba K; Minamino T
    Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32872412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli.
    Braun TF; Poulson S; Gully JB; Empey JC; Van Way S; Putnam A; Blair DF
    J Bacteriol; 1999 Jun; 181(11):3542-51. PubMed ID: 10348868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the
    Suzuki Y; Morimoto YV; Oono K; Hayashi F; Oosawa K; Kudo S; Nakamura S
    J Bacteriol; 2019 Mar; 201(6):. PubMed ID: 30642987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation.
    Morimoto YV; Nakamura S; Hiraoka KD; Namba K; Minamino T
    J Bacteriol; 2013 Feb; 195(3):474-81. PubMed ID: 23161029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor.
    Morimoto YV; Nakamura S; Kami-ike N; Namba K; Minamino T
    Mol Microbiol; 2010 Dec; 78(5):1117-29. PubMed ID: 21091499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion analysis of MotA and MotB, components of the force-generating unit in the flagellar motor of Salmonella.
    Muramoto K; Macnab RM
    Mol Microbiol; 1998 Sep; 29(5):1191-202. PubMed ID: 9767587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation.
    Che YS; Nakamura S; Kojima S; Kami-ike N; Namba K; Minamino T
    J Bacteriol; 2008 Oct; 190(20):6660-7. PubMed ID: 18723617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor.
    Che YS; Nakamura S; Morimoto YV; Kami-Ike N; Namba K; Minamino T
    Mol Microbiol; 2014 Jan; 91(1):175-84. PubMed ID: 24255940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motility protein interactions in the bacterial flagellar motor.
    Garza AG; Harris-Haller LW; Stoebner RA; Manson MD
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1970-4. PubMed ID: 7892209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex.
    Sakai T; Miyata T; Terahara N; Mori K; Inoue Y; Morimoto YV; Kato T; Namba K; Minamino T
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB.
    Togashi F; Yamaguchi S; Kihara M; Aizawa SI; Macnab RM
    J Bacteriol; 1997 May; 179(9):2994-3003. PubMed ID: 9139919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of a conserved prolyl residue (Pro173) of MotA in the mechanochemical reaction cycle of the proton-driven flagellar motor of Salmonella.
    Nakamura S; Morimoto YV; Kami-ike N; Minamino T; Namba K
    J Mol Biol; 2009 Oct; 393(2):300-7. PubMed ID: 19683537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor.
    Nakamura S; Minamino T; Kami-Ike N; Kudo S; Namba K
    Biophysics (Nagoya-shi); 2014; 10():35-41. PubMed ID: 27493496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB.
    Zhou J; Sharp LL; Tang HL; Lloyd SA; Billings S; Braun TF; Blair DF
    J Bacteriol; 1998 May; 180(10):2729-35. PubMed ID: 9573160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli.
    Gosink KK; Häse CC
    J Bacteriol; 2000 Aug; 182(15):4234-40. PubMed ID: 10894732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli.
    Braun TF; Al-Mawsawi LQ; Kojima S; Blair DF
    Biochemistry; 2004 Jan; 43(1):35-45. PubMed ID: 14705929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
    Asai Y; Yakushi T; Kawagishi I; Homma M
    J Mol Biol; 2003 Mar; 327(2):453-63. PubMed ID: 12628250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational change in the stator of the bacterial flagellar motor.
    Kojima S; Blair DF
    Biochemistry; 2001 Oct; 40(43):13041-50. PubMed ID: 11669642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor.
    Lloyd SA; Whitby FG; Blair DF; Hill CP
    Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor.
    Pourjaberi SNS; Terahara N; Namba K; Minamino T
    Mol Microbiol; 2017 Nov; 106(4):646-658. PubMed ID: 28925530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.