These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 32872483)
1. Detection of Micro-Cracks in Metals Using Modulation of PZT-Induced Lamb Waves. Lee SE; Hong JW Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872483 [TBL] [Abstract][Full Text] [Related]
2. Analytical and numerical modeling of nonlinear lamb wave interaction with a breathing crack with low-frequency modulation. Yuan P; Xu X; Glorieux C; Jia K; Chen J; Chen X; Yin A Ultrasonics; 2024 May; 140():107306. PubMed ID: 38579487 [TBL] [Abstract][Full Text] [Related]
3. Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks. Zhao Y; Li F; Cao P; Liu Y; Zhang J; Fu S; Zhang J; Hu N Ultrasonics; 2017 Aug; 79():60-67. PubMed ID: 28433810 [TBL] [Abstract][Full Text] [Related]
4. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach. Shen Y; Cesnik CE Ultrasonics; 2017 Feb; 74():106-123. PubMed ID: 27770666 [TBL] [Abstract][Full Text] [Related]
5. Crack Detection of Threaded Steel Rods Based on Ultrasonic Guided Waves. Peng K; Zhang Y; Xu X; Han J; Luo Y Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146234 [TBL] [Abstract][Full Text] [Related]
6. Numerical simulation of nonlinear Lamb waves used in a thin plate for detecting buried micro-cracks. Wan X; Zhang Q; Xu G; Tse PW Sensors (Basel); 2014 May; 14(5):8528-46. PubMed ID: 24834908 [TBL] [Abstract][Full Text] [Related]
7. Experimental and Numerical Investigation of the Micro-Crack Damage in Elastic Solids by Two-Way Collinear Mixing Method. Liu H; Zhao Y; Zhang H; Deng M; Hu N; Bi X Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804180 [TBL] [Abstract][Full Text] [Related]
8. Analytical insight into "breathing" crack-induced acoustic nonlinearity with an application to quantitative evaluation of contact cracks. Wang K; Liu M; Su Z; Yuan S; Fan Z Ultrasonics; 2018 Aug; 88():157-167. PubMed ID: 29660569 [TBL] [Abstract][Full Text] [Related]
15. The zero-frequency component of bulk waves in solids with randomly distributed micro-cracks. Sun X; Liu H; Zhao Y; Qu J; Deng M; Hu N Ultrasonics; 2020 Sep; 107():106172. PubMed ID: 32450428 [TBL] [Abstract][Full Text] [Related]
16. Fatigue crack localization using noncontact laser ultrasonics and state space attractors. Liu P; Sohn H; Yang S; Kundu T J Acoust Soc Am; 2015 Aug; 138(2):890-8. PubMed ID: 26328704 [TBL] [Abstract][Full Text] [Related]
17. Modelling nonlinearity of guided ultrasonic waves in fatigued materials using a nonlinear local interaction simulation approach and a spring model. Radecki R; Su Z; Cheng L; Packo P; Staszewski WJ Ultrasonics; 2018 Mar; 84():272-289. PubMed ID: 29179158 [TBL] [Abstract][Full Text] [Related]
18. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation. Hong M; Su Z; Wang Q; Cheng L; Qing X Ultrasonics; 2014 Mar; 54(3):770-8. PubMed ID: 24156928 [TBL] [Abstract][Full Text] [Related]
19. Ordinary state-based peri-ultrasound modeling to study the effects of multiple cracks on the nonlinear response of plate structures. Zhang G; Li X; Kundu T Ultrasonics; 2023 Aug; 133():107028. PubMed ID: 37178484 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Material Integrity Using Higher-Order Harmonic Generation in Propagating Shear Horizontal Ultrasonic Waves. Radecki R; Staszewski WJ Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]