These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32872500)

  • 1. Characterization of Activated Carbon Paper Electrodes Prepared by Rice Husk-Isolated Cellulose Fibers for Supercapacitor Applications.
    Kim HG; Kim YS; Kwac LK; Shin HK
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32872500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blotting Paper-Derived Activated Porous Carbon/Reduced Graphene Oxide Composite Electrodes for Supercapacitor Applications.
    Jiang Q; Liu D; Liu B; Zhou T; Zhou J
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31861201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products.
    Menya E; Olupot PW; Storz H; Lubwama M; Kiros Y
    Waste Manag; 2018 Nov; 81():104-116. PubMed ID: 30527026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H
    Barakat NAM; Irfan OM; Moustafa HM
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications.
    Du X; Zhao W; Wang Y; Wang C; Chen M; Qi T; Hua C; Ma M
    Bioresour Technol; 2013 Dec; 149():31-7. PubMed ID: 24084201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose-based aerogel derived N, B-co-doped porous biochar for high-performance CO
    Xiao J; Yuan X; Li W; Zhang TC; He G; Yuan S
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):132078. PubMed ID: 38705332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated Carbons and Their Evaluation in Electric Double Layer Capacitors.
    Kierzek K; Gryglewicz G
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32947979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode.
    Lee M; Kim GP; Don Song H; Park S; Yi J
    Nanotechnology; 2014 Aug; 25(34):345601. PubMed ID: 25092115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From waste to value-added products: Evaluation of activated carbon generated from leather waste for supercapacitor applications.
    El-Hout SI; Attia SY; Mohamed SG; Abdelbasir SM
    J Environ Manage; 2022 Feb; 304():114222. PubMed ID: 34871869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on pore structure regulation of activated carbon derived from sargassum and its application in supercapacitor.
    Li S; Tan X; Li H; Gao Y; Wang Q; Li G; Guo M
    Sci Rep; 2022 Jun; 12(1):10106. PubMed ID: 35710583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced electrochemical performance of porous carbon from wheat straw as remolded by hydrothermal processing.
    He C; Huang M; Zhao L; Lei Y; He J; Tian D; Zeng Y; Shen F; Zou J
    Sci Total Environ; 2022 Oct; 842():156905. PubMed ID: 35753495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications.
    Zhang W; Xu J; Hou D; Yin J; Liu D; He Y; Lin H
    J Colloid Interface Sci; 2018 Nov; 530():338-344. PubMed ID: 29982026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-D hierarchical porous carbon from oxidized lignin by one-step activation for high-performance supercapacitor.
    Wan X; Shen F; Hu J; Huang M; Zhao L; Zeng Y; Tian D; Yang G; Zhang Y
    Int J Biol Macromol; 2021 Jun; 180():51-60. PubMed ID: 33727185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coffee-derived activated carbon from second biowaste for supercapacitor applications.
    Adan-Mas A; Alcaraz L; Arévalo-Cid P; López-Gómez FA; Montemor F
    Waste Manag; 2021 Feb; 120():280-289. PubMed ID: 33316548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers.
    Deng L; Young RJ; Kinloch IA; Abdelkader AM; Holmes SM; De Haro-Del Rio DA; Eichhorn SJ
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9983-90. PubMed ID: 24070254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct conversion of lignin-rich black liquor to activated carbon for supercapacitor electrodes.
    Jain K; Singh M; Yadav K; Saharan P; Gupta A; Dhakate SR
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132150. PubMed ID: 38729470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor.
    Shu Y; Bai Q; Fu G; Xiong Q; Li C; Ding H; Shen Y; Uyama H
    Carbohydr Polym; 2020 Jan; 227():115346. PubMed ID: 31590873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon.
    Alvarez J; Lopez G; Amutio M; Bilbao J; Olazar M
    Bioresour Technol; 2014 Oct; 170():132-137. PubMed ID: 25127010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste-Wood-Isolated Cellulose-Based Activated Carbon Paper Electrodes with Graphene Nanoplatelets for Flexible Supercapacitors.
    Lee JJ; Chae SH; Lee JJ; Lee MS; Yoon W; Kwac LK; Kim HG; Shin HK
    Molecules; 2023 Nov; 28(23):. PubMed ID: 38067551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization.
    Nizamuddin S; Siddiqui MTH; Baloch HA; Mubarak NM; Griffin G; Madapusi S; Tanksale A
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17529-17539. PubMed ID: 29663294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.