These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32872506)

  • 1. Computational Method for Quantitative Comparison of Activity Landscapes on the Basis of Image Data.
    Iqbal J; Vogt M; Bajorath J
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32872506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity landscape image analysis using convolutional neural networks.
    Iqbal J; Vogt M; Bajorath J
    J Cheminform; 2020 May; 12(1):34. PubMed ID: 33431003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Comparison of Three-Dimensional Activity Landscapes of Compound Data Sets Based upon Topological Features.
    Iqbal J; Vogt M; Bajorath J
    ACS Omega; 2020 Sep; 5(37):24111-24117. PubMed ID: 32984733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Activity Landscape Models of Different Design and Their Application to Compound Mapping and Potency Prediction.
    Miyao T; Funatsu K; Bajorath J
    J Chem Inf Model; 2019 Mar; 59(3):993-1004. PubMed ID: 30485091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs.
    Peltason L; Iyer P; Bajorath J
    J Chem Inf Model; 2010 Jun; 50(6):1021-33. PubMed ID: 20443603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress with modeling activity landscapes in drug discovery.
    Vogt M
    Expert Opin Drug Discov; 2018 Jul; 13(7):605-615. PubMed ID: 29656681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of an activity landscape view taking compound-based feature probabilities into account.
    Zhang B; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2014 Sep; 28(9):919-26. PubMed ID: 25001923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of activity landscapes for drug discovery.
    Bajorath J
    Expert Opin Drug Discov; 2012 Jun; 7(6):463-73. PubMed ID: 22475223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditional probabilities of activity landscape features for individual compounds.
    Vogt M; Iyer P; Maggiora GM; Bajorath J
    J Chem Inf Model; 2013 Jul; 53(7):1602-12. PubMed ID: 23789585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity landscape of DNA methyltransferase inhibitors bridges chemoinformatics with epigenetic drug discovery.
    Naveja JJ; Medina-Franco JL
    Expert Opin Drug Discov; 2015 Oct; 10(10):1059-70. PubMed ID: 26289576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic computational analysis of structure-activity relationships: concepts, challenges and recent advances.
    Peltason L; Bajorath J
    Future Med Chem; 2009 Jun; 1(3):451-66. PubMed ID: 21426126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From bird's eye views to molecular communities: two-layered visualization of structure-activity relationships in large compound data sets.
    Kayastha S; Kunimoto R; Horvath D; Varnek A; Bajorath J
    J Comput Aided Mol Des; 2017 Nov; 31(11):961-977. PubMed ID: 28986673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of 3D activity cliffs on the basis of compound binding modes and comparison of 2D and 3D cliffs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2012 Mar; 52(3):670-7. PubMed ID: 22394306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Qualitative to Quantitative Analysis of Activity and Property Landscapes.
    Maggiora G; Medina-Franco JL; Iqbal J; Vogt M; Bajorath J
    J Chem Inf Model; 2020 Dec; 60(12):5873-5880. PubMed ID: 33205984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of different virtual screening strategies on the basis of compound sets with characteristic core distributions and dissimilarity relationships.
    Miyao T; Jasial S; Bajorath J; Funatsu K
    J Comput Aided Mol Des; 2019 Aug; 33(8):729-743. PubMed ID: 31435894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing predictive ability of QSAR/QSPR models using 2D and 3D molecular representations.
    Sato A; Miyao T; Jasial S; Funatsu K
    J Comput Aided Mol Des; 2021 Feb; 35(2):179-193. PubMed ID: 33392949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a three-dimensional multitarget activity landscape.
    de la Vega de León A; Bajorath J
    J Chem Inf Model; 2012 Nov; 52(11):2876-83. PubMed ID: 23113585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of activity cliffs on the basis of images using convolutional neural networks.
    Iqbal J; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2021 Dec; 35(12):1157-1164. PubMed ID: 33740200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarity-potency trees: a method to search for SAR information in compound data sets and derive SAR rules.
    Wawer M; Bajorath J
    J Chem Inf Model; 2010 Aug; 50(8):1395-409. PubMed ID: 20726598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of bioactive chemical space networks generated using substructure- and fingerprint-based measures of molecular similarity.
    Zhang B; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Jul; 29(7):595-608. PubMed ID: 26049785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.