These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32872592)
1. Establishment and Evaluation of an In Vitro System for Biophysical Stimulation of Human Osteoblasts. Stephan M; Zimmermann J; Klinder A; Sahm F; van Rienen U; Kämmerer PW; Bader R; Jonitz-Heincke A Cells; 2020 Aug; 9(9):. PubMed ID: 32872592 [TBL] [Abstract][Full Text] [Related]
2. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Ziebart J; Fan S; Schulze C; Kämmerer PW; Bader R; Jonitz-Heincke A Bone Joint Res; 2018 Feb; 7(2):187-195. PubMed ID: 29682285 [TBL] [Abstract][Full Text] [Related]
3. Alternating Electric Fields Modify the Function of Human Osteoblasts Growing on and in the Surroundings of Titanium Electrodes. Sahm F; Ziebart J; Jonitz-Heincke A; Hansmann D; Dauben T; Bader R Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971771 [TBL] [Abstract][Full Text] [Related]
4. Establishment of a novel in vitro test setup for electric and magnetic stimulation of human osteoblasts. Grunert PC; Jonitz-Heincke A; Su Y; Souffrant R; Hansmann D; Ewald H; Krüger A; Mittelmeier W; Bader R Cell Biochem Biophys; 2014 Nov; 70(2):805-17. PubMed ID: 24782061 [TBL] [Abstract][Full Text] [Related]
5. Re-Differentiation Capacity of Human Chondrocytes in Vitro Following Electrical Stimulation with Capacitively Coupled Fields. Krueger S; Achilles S; Zimmermann J; Tischer T; Bader R; Jonitz-Heincke A J Clin Med; 2019 Oct; 8(11):. PubMed ID: 31652962 [TBL] [Abstract][Full Text] [Related]
6. Enhancing osteoblast survival through pulsed electrical stimulation and implications for osseointegration. Pettersen E; Shah FA; Ortiz-Catalan M Sci Rep; 2021 Nov; 11(1):22416. PubMed ID: 34789829 [TBL] [Abstract][Full Text] [Related]
7. Promoting Proliferation and Differentiation of Pre-Osteoblasts MC3T3-E1 Cells Under Combined Mechanical and Electrical Stimulation. Li P; Xu J; Liu L; Zhang Y; Liu M; Fan Y J Biomed Nanotechnol; 2019 May; 15(5):921-929. PubMed ID: 30890224 [TBL] [Abstract][Full Text] [Related]
8. Magnetically induced electrostimulation of human osteoblasts results in enhanced cell viability and osteogenic differentiation. Hiemer B; Ziebart J; Jonitz-Heincke A; Grunert PC; Su Y; Hansmann D; Bader R Int J Mol Med; 2016 Jul; 38(1):57-64. PubMed ID: 27220915 [TBL] [Abstract][Full Text] [Related]
9. Effect of micromechanical stimulations on osteoblasts: development of a device simulating the mechanical situation at the bone-implant interface. Pioletti DP; Müller J; Rakotomanana LR; Corbeil J; Wild E J Biomech; 2003 Jan; 36(1):131-5. PubMed ID: 12485648 [TBL] [Abstract][Full Text] [Related]
10. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533 [TBL] [Abstract][Full Text] [Related]
11. Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation. Lind M Acta Orthop Scand Suppl; 1998 Oct; 283():2-37. PubMed ID: 9856074 [TBL] [Abstract][Full Text] [Related]
12. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. Hartig M; Joos U; Wiesmann HP Eur Biophys J; 2000; 29(7):499-506. PubMed ID: 11156291 [TBL] [Abstract][Full Text] [Related]
13. A Novel Dauben TJ; Ziebart J; Bender T; Zaatreh S; Kreikemeyer B; Bader R Biomed Res Int; 2016; 2016():5178640. PubMed ID: 28044132 [TBL] [Abstract][Full Text] [Related]
14. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets. Colombo JS; Satoshi S; Okazaki J; Crean SJ; Sloan AJ; Waddington RJ J Dent; 2012 Apr; 40(4):338-46. PubMed ID: 22307025 [TBL] [Abstract][Full Text] [Related]
15. Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields. Clark CC; Wang W; Brighton CT J Orthop Res; 2014 Jul; 32(7):894-903. PubMed ID: 24644137 [TBL] [Abstract][Full Text] [Related]
16. Construction of multilayered molecular reservoirs on a titanium alloy implant for combinational drug delivery to promote osseointegration in osteoporotic conditions. Chen M; Huang L; Shen X; Li M; Luo Z; Cai K; Hu Y Acta Biomater; 2020 Mar; 105():304-318. PubMed ID: 31982586 [TBL] [Abstract][Full Text] [Related]
17. Establishment of a New Device for Electrical Stimulation of Non-Degenerative Cartilage Cells In Vitro. Krueger S; Riess A; Jonitz-Heincke A; Weizel A; Seyfarth A; Seitz H; Bader R Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33401406 [TBL] [Abstract][Full Text] [Related]
18. Long-term stimulation with alternating electric fields modulates the differentiation and mineralization of human pre-osteoblasts. Sahm F; Freiin Grote V; Zimmermann J; Haack F; Uhrmacher AM; van Rienen U; Bader R; Detsch R; Jonitz-Heincke A Front Physiol; 2022; 13():965181. PubMed ID: 36246121 [TBL] [Abstract][Full Text] [Related]
19. Effect of implant surface roughness and loading on peri-implant bone formation. Vandamme K; Naert I; Vander Sloten J; Puers R; Duyck J J Periodontol; 2008 Jan; 79(1):150-7. PubMed ID: 18166105 [TBL] [Abstract][Full Text] [Related]
20. Photofunctionalization increases the bioactivity and osteoconductivity of the titanium alloy Ti6Al4V. Minamikawa H; Ikeda T; Att W; Hagiwara Y; Hirota M; Tabuchi M; Aita H; Park W; Ogawa T J Biomed Mater Res A; 2014 Oct; 102(10):3618-30. PubMed ID: 24248891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]