BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32872797)

  • 1. Dismantling complex networks based on the principal eigenvalue of the adjacency matrix.
    Zhou M; Tan J; Liao H; Wang Z; Mao R
    Chaos; 2020 Aug; 30(8):083118. PubMed ID: 32872797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal stabilization of Boolean networks through collective influence.
    Wang J; Pei S; Wei W; Feng X; Zheng Z
    Phys Rev E; 2018 Mar; 97(3-1):032305. PubMed ID: 29776182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved collective influence of finding most influential nodes based on disjoint-set reinsertion.
    Zhu F
    Sci Rep; 2018 Sep; 8(1):14503. PubMed ID: 30266910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural extraction of multiscale essential structure for network dismantling.
    Liu Q; Wang B
    Neural Netw; 2022 Oct; 154():99-108. PubMed ID: 35872517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact models for influential nodes identification problem in directed networks.
    Jiang C; Liu X; Zhang J; Yu X
    Chaos; 2020 May; 30(5):053126. PubMed ID: 32491886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximating the largest eigenvalue of the modified adjacency matrix of networks with heterogeneous node biases.
    Ott E; Pomerance A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056111. PubMed ID: 19518525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding influential nodes in complex networks based on Kullback-Leibler model within the neighborhood.
    Wang G; Sun Z; Wang T; Li Y; Hu H
    Sci Rep; 2024 Jun; 14(1):13269. PubMed ID: 38858462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing target nodes selection for the control energy of directed complex networks.
    Chen H; Yong EH
    Sci Rep; 2020 Oct; 10(1):18112. PubMed ID: 33093576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized network dismantling.
    Ren XL; Gleinig N; Helbing D; Antulov-Fantulin N
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6554-6559. PubMed ID: 30877241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragmenting networks by targeting collective influencers at a mesoscopic level.
    Kobayashi T; Masuda N
    Sci Rep; 2016 Nov; 6():37778. PubMed ID: 27886251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct types of eigenvector localization in networks.
    Pastor-Satorras R; Castellano C
    Sci Rep; 2016 Jan; 6():18847. PubMed ID: 26754565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Influential Nodes in Complex Networks Based on Multiple Local Attributes and Information Entropy.
    Zhang J; Zhang Q; Wu L; Zhang J
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing interconnections to maximize the spectral radius of interdependent networks.
    Chen H; Zhao X; Liu F; Xu S; Lu W
    Phys Rev E; 2017 Mar; 95(3-1):032308. PubMed ID: 28415238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dismantling efficiency and network fractality.
    Im YS; Kahng B
    Phys Rev E; 2018 Jul; 98(1-1):012316. PubMed ID: 30110770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Social climber attachment in forming networks produces a phase transition in a measure of connectivity.
    Taylor D; Larremore DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031140. PubMed ID: 23030899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network dismantling.
    Braunstein A; Dall'Asta L; Semerjian G; Zdeborová L
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12368-12373. PubMed ID: 27791075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the influence of all nodes in a network.
    Lawyer G
    Sci Rep; 2015 Mar; 5():8665. PubMed ID: 25727453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to enhance the dynamic range of excitatory-inhibitory excitable networks.
    Pei S; Tang S; Yan S; Jiang S; Zhang X; Zheng Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021909. PubMed ID: 23005787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximating spectral impact of structural perturbations in large networks.
    Milanese A; Sun J; Nishikawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046112. PubMed ID: 20481791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.