These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 32872810)
1. Dense networks that do not synchronize and sparse ones that do. Townsend A; Stillman M; Strogatz SH Chaos; 2020 Aug; 30(8):083142. PubMed ID: 32872810 [TBL] [Abstract][Full Text] [Related]
2. Sufficiently dense Kuramoto networks are globally synchronizing. Kassabov M; Strogatz SH; Townsend A Chaos; 2021 Jul; 31(7):073135. PubMed ID: 34340322 [TBL] [Abstract][Full Text] [Related]
3. A global synchronization theorem for oscillators on a random graph. Kassabov M; Strogatz SH; Townsend A Chaos; 2022 Sep; 32(9):093119. PubMed ID: 36182402 [TBL] [Abstract][Full Text] [Related]
4. The lower bound of the network connectivity guaranteeing in-phase synchronization. Yoneda R; Tatsukawa T; Teramae JN Chaos; 2021 Jun; 31(6):063124. PubMed ID: 34241310 [TBL] [Abstract][Full Text] [Related]
5. The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Golomb D; Hansel D Neural Comput; 2000 May; 12(5):1095-139. PubMed ID: 10905810 [TBL] [Abstract][Full Text] [Related]
6. Effective Subnetwork Topology for Synchronizing Interconnected Networks of Coupled Phase Oscillators. Yamamoto H; Kubota S; Shimizu FA; Hirano-Iwata A; Niwano M Front Comput Neurosci; 2018; 12():17. PubMed ID: 29643771 [TBL] [Abstract][Full Text] [Related]
7. Classification of attractors for systems of identical coupled Kuramoto oscillators. Engelbrecht JR; Mirollo R Chaos; 2014 Mar; 24(1):013114. PubMed ID: 24697376 [TBL] [Abstract][Full Text] [Related]
8. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators. Kato M; Kori H Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893 [TBL] [Abstract][Full Text] [Related]
9. Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Bick C; Ashwin P; Rodrigues A Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441 [TBL] [Abstract][Full Text] [Related]
10. Multistability of twisted states in non-locally coupled Kuramoto-type models. Girnyk T; Hasler M; Maistrenko Y Chaos; 2012 Mar; 22(1):013114. PubMed ID: 22462990 [TBL] [Abstract][Full Text] [Related]
11. Synchrony and desynchrony in integrate-and-fire oscillators. Campbell SR; Wang DL; Jayaprakash C Neural Comput; 1999 Oct; 11(7):1595-619. PubMed ID: 10490940 [TBL] [Abstract][Full Text] [Related]
12. Neuromodulatory effects on synchrony and network reorganization in networks of coupled Kuramoto oscillators. Aktay S; Sander LM; Zochowski M bioRxiv; 2024 Feb; ():. PubMed ID: 38464134 [TBL] [Abstract][Full Text] [Related]
13. The size of the sync basin. Wiley DA; Strogatz SH; Girvan M Chaos; 2006 Mar; 16(1):015103. PubMed ID: 16599769 [TBL] [Abstract][Full Text] [Related]
14. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise. Gong CC; Zheng C; Toenjes R; Pikovsky A Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833 [TBL] [Abstract][Full Text] [Related]
16. Optimizing synchrony with a minimal coupling strength of coupled phase oscillators on complex networks based on desynchronous clustering. Chen W; Gao J; Lan Y; Xiao J Phys Rev E; 2022 Apr; 105(4-1):044302. PubMed ID: 35590563 [TBL] [Abstract][Full Text] [Related]
17. Order parameter allows classification of planar graphs based on balanced fixed points in the Kuramoto model. Kaiser F; Alim K Phys Rev E; 2019 May; 99(5-1):052308. PubMed ID: 31212471 [TBL] [Abstract][Full Text] [Related]
18. Synchronization and chimera states of frequency-weighted Kuramoto-oscillator networks. Wang H; Li X Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066214. PubMed ID: 21797468 [TBL] [Abstract][Full Text] [Related]
19. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION. Taylor D; Skardal PS; Sun J SIAM J Appl Math; 2016; 76(5):1984-2008. PubMed ID: 27872501 [TBL] [Abstract][Full Text] [Related]