These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32872889)

  • 1. Wavelet scattering networks for atomistic systems with extrapolation of material properties.
    Sinz P; Swift MW; Brumwell X; Liu J; Kim KJ; Qi Y; Hirn M
    J Chem Phys; 2020 Aug; 153(8):084109. PubMed ID: 32872889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems.
    Grisafi A; Wilkins DM; Csányi G; Ceriotti M
    Phys Rev Lett; 2018 Jan; 120(3):036002. PubMed ID: 29400528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Universal Framework for Featurization of Atomistic Systems.
    Lei X; Medford AJ
    J Phys Chem Lett; 2022 Sep; 13(34):7911-7919. PubMed ID: 35980312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid harmonic wavelet scattering for predictions of molecule properties.
    Eickenberg M; Exarchakis G; Hirn M; Mallat S; Thiry L
    J Chem Phys; 2018 Jun; 148(24):241732. PubMed ID: 29960365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of local structure into kriging models for the prediction of atomistic properties in the water decamer.
    Davie SJ; Di Pasquale N; Popelier PL
    J Comput Chem; 2016 Oct; 37(27):2409-22. PubMed ID: 27535711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings of the International Workshop on Current Challenges in Liquid and Glass Science, (The Cosener's House, Abingdon 10-12 January 2007).
    Hannon AC; Salmon PS; Soper AK
    J Phys Condens Matter; 2007 Oct; 19(41):410301. PubMed ID: 28192312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy.
    Andolina CM; Williamson P; Saidi WA
    J Chem Phys; 2020 Apr; 152(15):154701. PubMed ID: 32321274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying machine learning techniques to predict the properties of energetic materials.
    Elton DC; Boukouvalas Z; Butrico MS; Fuge MD; Chung PW
    Sci Rep; 2018 Jun; 8(1):9059. PubMed ID: 29899464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Prediction of Phonon Density of States With Euclidean Neural Networks.
    Chen Z; Andrejevic N; Smidt T; Ding Z; Xu Q; Chi YT; Nguyen QT; Alatas A; Kong J; Li M
    Adv Sci (Weinh); 2021 Jun; 8(12):e2004214. PubMed ID: 34165895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks.
    Tsubaki M; Mizoguchi T
    J Phys Chem Lett; 2018 Oct; 9(19):5733-5741. PubMed ID: 30081630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques.
    Amin HU; Malik AS; Ahmad RF; Badruddin N; Kamel N; Hussain M; Chooi WT
    Australas Phys Eng Sci Med; 2015 Mar; 38(1):139-49. PubMed ID: 25649845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5.
    Eckhoff M; Behler J
    J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating long-range physics in atomic-scale machine learning.
    Grisafi A; Ceriotti M
    J Chem Phys; 2019 Nov; 151(20):204105. PubMed ID: 31779318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic⁻Seismic Mixed Feature Extraction Based on Wavelet Transform for Vehicle Classification in Wireless Sensor Networks.
    Zhang H; Pan Z; Zhang W
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29875334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backmapping coarse-grained macromolecules: An efficient and versatile machine learning approach.
    Li W; Burkhart C; Polińska P; Harmandaris V; Doxastakis M
    J Chem Phys; 2020 Jul; 153(4):041101. PubMed ID: 32752654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning of molecular properties: Locality and active learning.
    Gubaev K; Podryabinkin EV; Shapeev AV
    J Chem Phys; 2018 Jun; 148(24):241727. PubMed ID: 29960350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials.
    Zaverkin V; Kästner J
    J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.