These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32872912)

  • 1. Neutron radiation effects on an electronic system on module.
    Lo Presti D; Medina NH; Guazzelli MA; Moralles M; Aguiar VAP; Oliveira JRB; Added N; Macchione ELA; Siqueira PTD; Zahn G; Genezini F; Bonanno D; Gallo G; Russo S; Sgouros O; Muoio A; Pandola L; Cappuzzello F;
    Rev Sci Instrum; 2020 Aug; 91(8):083301. PubMed ID: 32872912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of DNA damage with a new system for irradiation of samples in a nuclear reactor.
    Gual MR; Milian FM; Deppman A; Coelho PR
    Appl Radiat Isot; 2011 Feb; 69(2):373-6. PubMed ID: 21075641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimethyl sulfoxide protects against thermal and epithermal neutron-induced cell death and mutagenesis of Chinese hamster ovary (CHO) cells.
    Kinashi Y; Sakurai Y; Masunaga S; Suzuki M; Akaboshi M; Ono K
    Int J Radiat Oncol Biol Phys; 2000 Jul; 47(5):1371-8. PubMed ID: 10889392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.
    Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G
    Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular structural analysis of HPRT mutations induced by thermal and epithermal neutrons in Chinese hamster ovary cells.
    Kinashi Y; Sakurai Y; Masunaga S; Suzuki M; Takagaki M; Akaboshi M; Ono K
    Radiat Res; 2000 Sep; 154(3):313-8. PubMed ID: 10956438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of k
    Barros LF; Ribeiro RV; Dias MS; Moralles M; Semmler R; Yamazaki IM; Koskinas MF
    Appl Radiat Isot; 2019 Dec; 154():108846. PubMed ID: 31442792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the thermal and epithermal neutron sensitivities of an LBO chamber.
    Endo S; Sato H; Shimazaki T; Nakajima E; Kotani K; Suda M; Hamano T; Kajimoto T; Tanaka K; Hoshi M
    Radiat Environ Biophys; 2017 Aug; 56(3):269-276. PubMed ID: 28639140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A prototype epithermal neutron beam for boron neutron capture therapy.
    Noonan DJ; Russell JL; Brugger RM
    Med Phys; 1986; 13(2):211-6. PubMed ID: 3010065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.
    Taheri A; Pazirandeh A
    Australas Phys Eng Sci Med; 2016 Dec; 39(4):857-862. PubMed ID: 27573907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of the epithermal neutron beam used for boron neutron capture therapy.
    Liu HB; Brugger RM; Greenberg DD; Rorer DC; Hu JP; Hauptman HM
    Int J Radiat Oncol Biol Phys; 1994 Mar; 28(5):1149-56. PubMed ID: 8175400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutron-induced gamma dose from a reactor beam filter for boron neutron capture therapy.
    Harrington BV
    Pigment Cell Res; 1989; 2(4):246-53. PubMed ID: 2798318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.
    Liu HB; Brugger RM; Rorer DC; Tichler PR; Hu JP
    Med Phys; 1994 Oct; 21(10):1627-31. PubMed ID: 7869995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of the response of ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons.
    Marrale M; Basile S; Brai M; Longo A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S186-9. PubMed ID: 19380235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary evaluations of the undesirable patient dose from a BNCT treatment at the ENEA-TAPIRO reactor.
    Ferrari P; Gualdrini G; Nava E; Burn KW
    Radiat Prot Dosimetry; 2007; 126(1-4):636-9. PubMed ID: 17704505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron fluence depth profiles in water phantom on epithermal beam of LVR-15 research reactor.
    Viererbl L; Klupak V; Lahodova Z; Marek M; Burian J
    Appl Radiat Isot; 2010; 68(4-5):617-9. PubMed ID: 20031426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation and Mitigation of Secondary Dose Delivered to Electronic Systems in Proton Therapy.
    Wroe AJ
    Technol Cancer Res Treat; 2016 Feb; 15(1):3-11. PubMed ID: 25616623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of the borated ion chamber at NIST reactor thermal column.
    Wang Z; Hertel NE; Lennox A
    Radiat Prot Dosimetry; 2007; 126(1-4):626-30. PubMed ID: 17525059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic system for ionization chamber current measurements.
    Brancaccio F; Dias MS; Koskinas MF
    Appl Radiat Isot; 2004 Dec; 61(6):1339-42. PubMed ID: 15388130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward Complete Leading-Order Predictions for Neutrinoless Double β Decay.
    Cirigliano V; Dekens W; de Vries J; Hoferichter M; Mereghetti E
    Phys Rev Lett; 2021 Apr; 126(17):172002. PubMed ID: 33988430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological dosimetry for epithermal neutron beams.
    White SM; Held KD; Palmer MR; Yanch JC
    Radiat Res; 2001 Jun; 155(6):778-84. PubMed ID: 11352759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.